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ABSTRACT

Our research develops computational approaches for studying face perception, and

in particular emotion recognition. We have developed biologically inspired algorithms

for representing and detecting the deformable face shape, and defined eye-tracking

methodology to infer which aspects of gaze are relevant to a category learning and

discrimination task. The first problem, shape detection, is addressed using two dif-

ferent approaches of manifold learning and probabilistic graphical models. In the

manifold learning approach, nonlinear regression is used to learn the function relat-

ing the object image to the associated shape. This technique is useful because it does

not require shape key points be defined at high contrast image regions, nor does it

require an initial shape estimate. In addition, the manifold can be learned at ex-

tremely coarse resolutions. The probabilistic graph approach uses a graph to encode

the homogenous structure of many natural objects. This approach is useful because

the graph allows inference of dozens of landmarks and can be applied to a variety of

object types. To understand category learning from eye tracking, we have developed

tools which identify the variables of an eye tracking sequence which predict if a human

subject has learned how to categorize an object. The methodology we developed was

applied to both adult and infant subjects, and validated several variables previously

used in categorization studies. The final portion of our work involves eye tracking
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experiments to determine the dimensions of emotion recognition from faces. Our

results give insight into the process of emotion recognition in adults and infants.
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CHAPTER 1

INTRODUCTION

This PhD work is concerned with face perception, and in particular the perception

of emotion from expressive faces. It has been argued that facial expressions are an

important part of communication, especially between parents and their infant before

verbal language develops [122, 116]. Facial expressions may also provide important

cues during social interaction. It is not surprising that populations affected by the

autism disorder, a condition marked by impaired social skills, exhibit impaired recog-

nition of emotion from faces [12]. The impairment may result from an improper

encoding of the face, supported by a study showing that scan paths differ between

autistic and healthy populations [58]. If that is the case, emotion recognition training

may provide relief to these clinical populations. Given the ubiquity of facial expres-

sions in social interactions as well as the potential benefit to clinical populations, we

aim to understand and model the process by which emotions are recognized from

emotional facial expressions.

Our work is divided into 4 main parts. The first part discusses the modeling

of detailed face shape. We propose an approach to shape detection of deformable

shapes in images via manifold learning with regression. Our method does not require

shape key points be defined at high contrast image regions, nor do we need an initial
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estimate of the shape. We only require sufficient representative training data and a

rough initial estimate of the object position and scale. We demonstrate the method

for face shape learning, and provide a comparison to nonlinear Active Appearance

Model. Our method is extremely accurate, to nearly pixel precision and is capable

of accurately detecting the shape of faces undergoing extreme expression changes.

The technique is robust to occlusions such as glasses and gives reasonable results for

extremely degraded image resolutions.

The second part introduces another approach to deformable shape detection using

probabilistic graphical models. Standard detectors are typically limited to locating

only a few salient landmarks such as landmarks near edges or areas of high contrast

[39, 47, 35], often conveying insufficient shape information. This paper presents a

novel approach to locate a dense set of salient and non-salient landmarks in images of

a deformable object. We explore the fact that several object classes exhibit a homoge-

nous structure such that each landmark position provides some information about the

position of the other landmarks. In our model, the relationship between all pairs of

landmarks is naturally encoded as a probabilistic graph. Dense landmark detections

are then obtained with a new sampling algorithm that, given a set of candidate de-

tections, selects the most likely positions as to maximize the probability of the graph.

Our experimental results demonstrate accurate, dense landmark detections within

and across different databases.

The third part details our work in eye tracking which determines variables relevant

to category learning and use. We present a computational approach for the selection

of eye tracking variables that distinguish learners from non-learners of visual cate-

gories. Previous methods for the selection of eye tracking variables have been ad-hoc

2



or hypothesis driven. In the absence of a good hypothesis, researchers are left to ex-

periment with many alternatives. To resolve this problem, we use feature extraction

and classification algorithms from machine learning to automatically identify the eye

tracking variables that best correlate within sample eye tracking sequences belonging

to the same category yet discriminate between categories. This approach allows us

to extract the few (i.e., two to four) most diagnostic features from a pool of dozens.

While previous work required the testing of a large number of hypotheses, we demon-

strate how the proposed methodology yields the same result without the need to test

a large number of alternative hypotheses. Instead, our method is data driven, i.e., the

resulting model is obtained from the data. The proposed methodology was verified

in a visual categorization task with adults and infants. We presented infants and

adults with a category learning task and tracked their eye movements. We extracted

an over-complete set of eye tracking variables encompassing durations, probabilities,

latencies, and the order of fixations and saccadic eye movements. We identified a

small set of variables that allowed us to predict category learning among adults and

6- to 8-month-old infants.

The final portion focuses on emotion recognition from faces. Previous research has

shown that adults recognize emotional expression categories using information from

distinct locations of the face and different spatial frequencies [111, 112, 30]. Smith et

al. [112] used the bubbles paradigm [45] and found little overlap in the positions of

the face that transmitted the 6 basic emotions. One drawback of using the Bubbles

methodology is that the impoverished stimuli may force participants to use a local

feature based strategy to recognize the emotions. This is problematic because research

suggests faces are processed holistically [38].
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An alternative approach to understanding which face areas encode emotion is to

monitor attention during expression viewing by tracking eye gaze, since gaze is linked

to spatial attention [34, 110]. Eisenbarth and Alpers [30] conducted an eye tracking

study to investigate whether scan paths are specific to emotion. They presented

faces expressing five emotion categories for 2500 ms each, and had participants rate

the images on scales of positive or negative valence and emotional arousal. They

found that participants spent a different proportion of looking times at discrete face

areas when viewing different emotional expressions, although subjects looked at the

eyes and mouth across the different emotions. A recent eye tracking study which

asked participants to identify the emotion category of expressive faces also found that

participants look qualitatively similarly in terms of percent looking time at the eyes,

nose, and mouth across emotion category [50]. They spend the greatest proportion

of looking time at the eyes, followed by the nose and mouth. The study suggests that

although people look at local features that are diagnostic of the emotion category,

participants probably extract a holistic representation of the face.

We hypothesize that if the gaze sequence differs systematically for different emo-

tions, then the gaze sequence should be diagnostic of the stimuli’s emotion category.

To test this, we performed an eye tracking study where adults were asked to label

the emotional expression category modeled in a series of still face photographs. We

demonstrate that there is considerable overlap in the areas looked at when adults

view emotional faces, consistent with the study by [50]. We found that while gaze

is somewhat predictive of the emotion category, it is insufficient to characterize the

stimuli emotion label. That was the case for gaze over the entire trial and segments
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of the trial, and using the overall fixation pattern as well as the first order fixation

sequence.

We conducted another eye tracking study with infants ranging from eight to 24

months old in order to characterize the change in scan path and the ability to recognize

emotional categories over development. We found evidence that infants are able to

generalize discrimination of emotional face categories across identities, although they

looked at expressive faces qualitatively differently from adults. Overall, the results

suggest that there are some emotion specific aspects of gaze, but the holistic face

information is probably extracted across all emotional categories.
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CHAPTER 2

DEFORMABLE SHAPE MANIFOLDS

Shape detection is an important problem in computer vision because of its utility

in object recognition, classification, tracking, and segmentation among others [65, 72,

21, 80]. The general shape detection problem can be stated as follows: Given an

image, can we delineate the shape of a specific object in the image? This problem

becomes difficult when the shape is not rigid, but can deform, translate, rotate, change

scale, or become occluded in the image. We are interested in this scenario.

We develop a new method for deformable shape detection based on manifold

learning through regression. We illustrate the concept applied to face shape detection

in Fig. 2.1. Consider this simplified illustration of the model where the u and v axes

correspond to the face image space, while the z axis corresponds to the face shape

space. Given a finite set of face image samples and their associated shape parameters,

we wish to estimate the nonlinear face shape manifold so that we can interpolate the

shape of new samples in the face image space. Once learned, the manifold provides a

direct mapping f(·) from a new image x ∈ Rp to the shape space y ∈ Rd, where p and

d are the number of image features and the number of shape parameters, respectively.

Hence, in contrast to most methods in shape detection and modeling which iteratively

fit a model to an image until convergence, the shape estimate is given in a single step.
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Figure 2.1: Conceptual illustration of the face shape manifold and the method pre-
sented. The u and v axes correspond to the face image space, while the z axis
corresponds to the face shape space. A finite set of face image samples and their as-
sociated shape parameters are used to estimate the nonlinear manifold. This manifold
defines a mapping f(·) from a face image sample to the associated shape parameters.

One of the first successful shape detection algorithms requiring an iterative ap-

proach was developed by Kass et al. [65] who utilized energy minimization to deform

active contour models, called snakes, to fit salient image features. Thus, this method

requires shapes be defined by high contrast regions. Additional constraints of how

much the shape can deform (e.g., based on smoothness) are incorporated, and with

a reasonable initialization of the shape, the model can deform to extract the shape

of the object. A logical extension of snakes was to change the smoothness constraint

of the shape for one that defines the variabilities of the object we want to model.

Cootes et al. [21] developed on this idea with models that could only deform in ways

specific to a given shape class. The shape variability was modeled using a probability

density function (pdf) learned by manually delineating shapes in sample images of

the object. This model is called the Active Shape Model (ASM). ASM works well
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but still requires high contrast regions such as edges for fitting the active contour. To

overcome this drawback, Cootes et al. defined the Active Appearance Model (AAM)

[20], where the density of the texture is also learned from sample images. The al-

gorithm finds the shape which best fits to the set of possible textures given by the

learned pdf. This method was enhanced by using boosting to learn the shape param-

eter update and confidence score [71]. Other authors take a Bayesian approach to

shape modeling, learning the conditional density of the shape parameters given the

object image, and iterating to the maximum a posteriori (MAP) estimate of the shape

parameters [48, 135, 51]. Liang et al. [70] improve on the idea by using regularization

at accurately aligned points to reduce the occurence of local minima favored by the

global shape model. Zhang et al. [131] further develop on this Bayesian approach by

using regression to learn a sequence of unimodal conditional density functions which

guide the shape estimate toward the correct solution.

Another alternative is to train a set of classifiers to detect various face fiducials

and inter-connect them to estimate the shape [27]. In this case, a sliding window

approach is used, where the classifiers are evaluated at all positions and scales of

interest followed by pruning and voting for the final detection. This approach can

provide very accurate results if high resolution images are available, but the sliding

window method is computationally demanding.

Zhou and Comaniciu changed direction with Shape Regression Machine (SRM)

and utilized nonlinear regression to segment the left ventricular endocardium in highly

structured images [133, 134]. SRM employs boosting with an over-complete feature

bank to train a strong learner which associates an image with a shape. A strong

learner is a linear combination of weak learners which coorespond to the outputs
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of local feature extractors. Detecting shape using such an approach is advantageous

because it avoids the initialization and iteration posed by the above methods. Regres-

sion has also been used by Cristinacce and Cootes [23] to model imprecisely detected

fiducials in faces. Imprecisely detected fiducials had previously been modeled using a

pdf [73].

Our approach is related to SRM in that both use nonlinear regression to relate

an image with a shape, but there are fundamental differences. Our model uses kernel

regression with global object appearance while SRM uses boosted regression with

local features. Our experiments show that the local approach is not as effective in

the low resolution setting as the holistic approach. Furthermore, SRM is proposed

for medical image segmentation so objects are normalized according to an estimated

scale and rotation parameter. In this work, images are normalized according to the

estimated eye positions which is more appropriate in the context of faces.

The approach proposed in the present paper and illustrated in Fig. 2.1 has the

positive aspects of the above approaches while eliminating some of the drawbacks:

1. As the discriminative approaches, the method is non-iterative.

2. As the generative approaches, the method does not require a sliding window.

3. The method does not require strong shape contours so the shape manifold can

be learned at extremely low resolutions.

4. The manifold is based on a specific shape model, so it will give a reasonable

shape estimate even in the case of large occlusions, deformations, or other image

changes.
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In the current work, we apply the method to face shapes, but the ideas can be

generalized to other deformable shapes.

The remainder of this chapter is organized as follows. In Section 2.1 we summarize

regression and in particular, the methods Kernel Ridge Regression and Support Vector

Regression. Section 2.2 describes our methodology in detail. Section 2.3 describes

several experiments which demonstrate the method’s ability to detect the shape of

realistic face images with occlusions, and at extremely low resolution. We close the

article with our conclusions in Section 2.4.

2.1 Regression

Regression allows us to find the functional relationship between some predictor

variables x ∈ Rp and an associated output y ∈ Rd [105]. Given x and y from unknown

distributions, we want to find the mapping function f : x → y which minimizes the

expected risk,

E[L(f(x),y)],

where L(f(x),y) is an appropriate cost function which penalizes the deviations be-

tween f(x) and y. Since we do not know the underlying distribution of the inde-

pendent and dependent variables, we generally minimize the empirical risk. Given a

training set (xi,yi), i = 1, 2, . . . , n, the empirical risk is given by

1

n

n∑
i=1

L(f(xi),yi).

Preliminary experiments showed that a simple linear model was insufficient for rep-

resenting the manifold illustrated in Fig. 2.1 accurately. We thus now turn our

attention to nonlinear regression.
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2.1.1 Kernel Ridge Regression

Kernel Ridge Regression (KRR) is the kernel extension of Ridge Regression (RR),

which is a penalized version of linear least squares regression [59]. RR minimizes the

cost function,

L(W) =
1

n

n∑
i=1

‖yi −WTxi‖2
F + λ‖W‖2

F ,

where λ is a user determined regularization parameter, ‖.‖F denotes the Frobenius

norm, and W ∈ Rp×d.

If we create a matrix X ∈ Rn×p where each row is one of the vectors from the

training input and a matrix Y ∈ Rn×d with the associated output values, the solution

is given by

arg min
W

L(W) = (XTX + λIp)
−1XTY, (2.1)

where Ip is the p × p identity matrix. Our regressed function is then f(x) = WTx,

where x is the input vector.

It has been shown [56] that we can extend this method to the nonlinear case

through the use of kernels. If we express W as a linear combination of the training

samples X and set the derivative of the cost function with respect to W equals zero

[107], the solution for the regressed function is given by

f(x) = YT (K + λIn)−1κ(x), (2.2)

where K ∈ Rn×n is the Gram matrix of the training data. The entries of the Gram

matrix are given by Kij = k(xi,xj), where k(·, ·) a Mercer kernel [124] and κ(x) =

(k(x,x1), k(x,x2), . . . , k(x,xn))T . We use the popular Radial Basis Function (RBF)

kernel given by

kσ(x,xi) = exp

(
−‖x− xi‖2

2

2σ2

)
,
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where σ is a parameter to tune and ‖.‖2 denotes the Euclidean-norm. We denote

the σ used in KRR by σK . Note that multiple KRR assumes the output values, the

shape parameters, are uncorrelated. Section 2.2.3 describes the shape model used to

achieve this property.

2.1.2 ε-Support Vector Regression

ε-Support Vector Regression (ε-SVR) is another linear regression method which

finds a linear function

f(x) = wTx + b,

where w ∈ Rp and b is a scalar, such that the difference between the regressed output

and the true output is below ε for all the training data while keeping f(·) as smooth

as possible. Smoothness is achieved through regularization by penalizing ‖w‖2
2 [113].

The underlying assumption of the algorithm is that there exists a function f(·)

which can correctly predict training data with ε precision. To mitigate this assump-

tion, one can introduce real valued scalar slack variables ξi and ξ∗i to the above

definition.

It has been shown [121] that this problem can be formulated as the following

convex optimization problem,

minimize
1

2
‖w‖2

2 + C
n∑
i=1

(ξi + ξ∗i )

subject to


yi −wTxi − b ≤ ε+ ξi
wTxi + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0,

(2.3)

where C > 0 is a constant which controls the trade-off between the smoothness of

f(·) and the allowable error greater than ε, and yi is the scalar output associated
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with xi. Instead of solving (2.3) directly, we solve the dual problem:

maximize


−1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )xTi xj

−ε
n∑
i=1

(αi − α∗i ) +
n∑
i=1

yi(αi + α∗i )

(2.4)

subject to
n∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C],

where αi and α∗i are the dual variables [9]. Using the dual formulation, w is expressed

as a linear combination of training samples so that the problem is independent of the

dimensionality of the input space [113]. This is important since we want to solve for

w in the kernel space.

The dual problem can be solved using quadratic programming, yielding

w =
n∑
i=1

(αi − α∗i )xi,

f(x) =
n∑
i=1

(αi − α∗i )xTi x + b. (2.5)

The value of b follows since it must satisfy the Karush-Kuhn-Tucker (KKT) conditions

[9]:

αi(ε+ ξi − yi + wTxi + b) = 0,

α∗i (ε+ ξ∗i − yi + wTxi − b) = 0.

Notice that in (2.4) and (2.5), the function input and training samples, x and xi,

only appear as inner products in the original feature space. Therefore, the method

can be extended to the nonlinear case through the use of a Mercer kernel, k(·, ·). The
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dual problem then becomes

maximize


−1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi,xj)

−ε
n∑
i=1

(αi − α∗i ) +
n∑
i=1

yi(αi + α∗i )

(2.6)

subject to
n∑
i=1

(αi − α∗i ) = 0 and αi, α
∗
i ∈ [0, C],

and

f(x) =
n∑
i=1

(αi − α∗i )k(xi,x) + b. (2.7)

As above, we use the RBF kernel. We denote the σ used in ε-SVR by σS.

ε-SVR is advantageous because it yields a sparse solution [113], but a good multi-

ple output formulation is yet to be defined. Typically, the multiple output ε-SVR is

defined by first uncorrelating the output values (shape parameters), then regressing

each separately. We use this approach in our implementation along with the single

output ε-SVR implementation LIBSVM [19].

2.2 Methodology

The method requires learning a function f(x)→ y which relates an image feature

vector x ∈ Rp to a set of shape parameters y ∈ Rd associated with shape coordinates

s ∈ Rk. Once the shape parameters are regressed, we can obtain the associated shape

coordinates by applying a mapping g from y to s, g(y) = s. The shape parameteriza-

tion and mapping functions are described in section 2.2.3. Shapes are defined by the

two dimensional coordinates of 130 points (also known as landmarks) delineating the

major facial fiducials (eyes, eyebrows, nose, mouth, and jaw) in a face image. This

set of k
2

two-dimensional coordinates, where k is an even integer equal to twice the
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number of shape landmarks, defines the face shape s for the image feature vector x.

Throughout the discussion, when we refer to the shape we mean the shape landmark

coordinate vector s, while shape parameters correspond to the associated parameters

y. The following describes the image normalization, shape parameterization, image

representation, and function learning methodology in detail.

2.2.1 General Algorithm

Our first step is to normalize all faces to facilitate subsequent modeling. This

involves detecting and cropping the faces, then scaling them to a standard size. Then

we detect the eye positions using an approach similar to [36], where regression is used

to learn the function which maps the scaled face image to the eye positions. After

detection, we rotate the images to an upright view and standard inter-eye distance.

Normalizing the images restricts the range of face deformations, concentrating the

samples in the image space and the associated shape space.

To model imprecise eye detections in test faces, we normalize the training faces

according to their perturbed eye positions following a Normal distribution. More for-

mally, let the true eye positions for all the training data be vectorized as true position =

(Lx, Ly, Rx, Ry)
T , where L and R correspond to the left and right eye, respectively,

and x and y correspond to the horizontal and vertical coordinates, respectively. The

perturbed positions are given by

perturbed position = true position+ ε, (2.8)

where ε ∼ N(µe,Σe), and µe and Σe are the sample mean and covariance of the eye

detection error. Note that we perturb the eye positions using the joint distribution
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Figure 2.2: Normalized faces with automatic eye detection coordinates highlighted.

of the error since we expect the errors to be correlated. Fig. 2.2 shows some example

normalized faces.

Next, we use regression to learn the face shape manifold defined by f(·). The

input to the regressor is a cropped image region x centered at the mean training face

position while the outputs are the associated shape parameters y. The features used

for regression can either be the pixels themselves or some pre-processing of the image.

In our experiments we evaluate the pixel intensities and the C1 features of Serre et

al. [106].

2.2.2 Feature Spaces

We experiment with two image feature spaces. Our first image representation

consists of the pixel intensities which are vectorized in a raster scan fashion and

normalized to unit length. The unit length normalization is done to reduce the effect

of intensity by the lighting source. The second image representation uses the C1

features of Serre et al. [106] which are reduced in dimensionality via PCA. The C1

features are the output of the 2nd layer of a 4−layer hierarchical filter architecture

modeling the hierarchy of the visual cortex. The first layer, S1, comprises of Gabor

filters at various positions, scales, and orientations. The second layer, C1, comprises

of maximum pooling operations of filter responses for the S1 layer in the same image
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regions with the same orientation and within the same scale band. This pooling

operation reduces sensitivity to small image perturbations. These image features are

useful in our approach because these gradient based features reduce sensitivity to

illumination changes and skin color.

2.2.3 Shape Modeling

Shape corresponds to the position of a discrete set of landmarks delineating the

face features (eyes, eyebrows, nose, mouth, and jawline). The shape is modeled using

a linear combination of a discrete set of d basis shapes usually referred to as shape

modes [21]. The shape parameters are the coefficients of the shape modes. The modes

correspond to directions in the shape space preserving most of the shape variance,

where the shape space is defined as the span of all shape coordinate vectors. This

model allows us to enforce reasonable limits on the possible shape deformation. For

example, varying the parameter of the first shape mode may correspond to scaling

the shape vertically. If we know the vertical range of the shape, then we could enforce

a constraint on the contribution of the first mode in the final shape description. More

modes can be included in the model to capture more of the possible shape variance.

Following on our previous example, adding a second mode may allow us to represent

vertical and horizontal shape scale changes. Representing shape using a number of

modes equal to the dimensionality of the shape coordinate vector would correspond

to a rotation of the shape coordinate vector in the shape space, or a change of basis.

Modes are derived using PCA. Specifically, the shape modes are defined by the

primary eigenvectors of the shape coordinate covariance matrix Σx ∈ Rk×k for a
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shape defined by k
2

landmarks in R2. These eigenvectors pi, i = 1, 2, . . . k, are the

ones associated with the largest eigenvalues, λi, with λ1 ≥ λ2 ≥ . . . λk ≥ 0.

The eigenvectors form an orthonormal basis for the shape space. This is important

because this yields uncorrelated shape parameters, and recall that multiple KRR and

our formulation of multiple ε-SVR assume the output variables are uncorrelated.

Since most of the shape variance will be preserved by just a few of the shape modes,

or eigenvectors, we can approximate shapes using a small number of parameters. The

percentage of shape variance preserved by each shape mode pi is given by the ratio

λi∑k
j=1 λj

. Thus, we can keep the amount of modes that preserves a desired amount of

the total shape variance.

If we arrange the principal eigenvectors into the columns of a matrix P ∈ Rk×d =

(p1,p2, . . .pd) with d ≤ k, and the associated eigenvalues into a diagonal matrix

Λ ∈ Rd×d, the shape parameter vector y associated with shape coordinate vector s is

given by

y = Λ−
1
2 PT (s− µ̂s), (2.9)

where µ̂s is the sample mean shape coordinate vector. Shape parameters are converted

back to the original space with

s = PΛ
1
2 y + µ̂s. (2.10)

The term Λ serves as a variance normalization which ensures that the objective

function favors each shape parameter appropriately.

2.2.4 Training the Regressor

The function f(·) mapping x to y for KRR is obtained using (2.2), and for ε-SVR

using (2.6) and (2.7). Note that KRR requires tuning the parameters λ and σK while

18



ε-SVR requires tuning the parameters C, ε, and σS. These parameters and the crop

size for x are optimized using a grid search to minimize the 5-fold cross-validation

error on the training set. Details are given in Section 2.3.3. For training, the face

shape of the original face image is manually annotated in each of our databases. When

a test image is presented to our algorithm, we detect the face position and scale using

the Viola and Jones Detector [123], center and scale the image to a standard face

size, then use our method to detect the face shape.

The manual shape annotations allow us to determine our final shape detection er-

ror. Error is defined by the average Euclidean distance from each landmark estimate

to the corresponding manually annotated landmark over all test shapes. More for-

mally, the error e for estimating N shapes sj, j = 1 . . . N by ŝj, j = 1 . . . N is defined

by

e =
2

Nk

k
2∑
i=1

N∑
j=1

√
(uij − ûij)2 + (vij − v̂ij)2, (2.11)

where uij and vij are vertical and horizontal components of the ith coordinate of the

shape j, and ûij and v̂ij their estimates.

2.3 Experiments

We evaluated 6 shape detection algorithms on the task of face shape detection.

The algorithms consisted of KRR or ε-SVR with pixel intensities or C1 features,

the nonlinear AAM of [51], and Adaboost regression with Haar fetures as in SRM

[133]. The goals were to evaluate how well each algorithm: generalizes across sev-

eral identities, manages occlusions and extreme expression changes, handles extreme

degradation in resolution, and performs in a real world setting. The specific databases

used were geared toward evaluating generalization ability, robustness to occlusions,
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and performance in the real world. The training and testing partitions within a

database were fixed across all algorithms to give a fair comparison.

2.3.1 Databases

The American Sign Language (ASL) database of [26] includes video sequences of

7 ASL signers. We manually annotated the face shape of 2, 437 images in the video

sequence at the original resolution of 480× 720 pixels. The face images in this data-

set show large variations in expression and self-occlusions (hands can occlude facial

regions when signing). Our goal with this database was to determine how well the

algorithm handles these two problems.

The AR face (AR) database [74] contains frontal faces from over 100 subjects

with largely varying facial expressions. We manually annotated 885 of the images at

the original resolution of 576× 768 pixels. Our goal with this database was to show

that the learned manifold (Fig. 2.1) generalizes across several identities, i.e., it is not

subject-specific, and can deal with extreme deformations such as a screaming face.

The Faces in the Wild (LFW) database [61] contains faces with varying facial

expressions, pose changes, and occlusions at different resolutions, in different contexts,

and in different photographic settings . Our goal with this database was to test the

algorithm’s performance in a real world setting. All faces in this database have already

been detected, cropped, and scaled to a standard size of 250 × 250 pixels. The face

coordinates of 2, 610 images were manually annotated at this scale of 250×250 pixels.

Different training percentages were used for each database according to the level

of difficulty in estimating the manifold. In general, difficulty increases as the amount
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of subjects and variability in the database increases. Variability corresponds to dif-

ferences in illumination, pose, occlusions, and other imaging artifacts. Therefore,

we used a random partition of 60% of the annotated images for training and the

remaining 40% for testing in the ASL database. We used 80% for training and the

remaining 20% for testing in the AR databse. The LFW database is by far the most

challenging, requiring many training samples for reasonable manifold estimation. We

used a random partition of 90% of the annotated images for training and the remain-

ing 10% for testing. Since the training set was so large in the LFW experiments, we

found it necessary to reduce the dimensionality of the pixel features for computational

tractability in the ε−SVR experiments. PCA was used, where 99% of the variance

was kept to preserve as much information as possible.

2.3.2 Different Resolution Analysis

To simulate the effects of low resolution we detected shape in images of different

sizes. We localized all faces except those from the LFW database (already localized)

in their original image using an off the shelf face detector, then cropped them in a

square region much larger than the detected face following the approach of Huang

et al. [61]. The cropped region was then scaled from 250 × 250 pixels to 50 × 50

pixels in decrements of 50 pixels. Details about the face detector and crop size are

given in Section 2.3.3. All of these images were normalized to a 42 pixels inter-eye

distance. 42 pixels was the mean eye distance of a random subset of images from

the LFW database which were originally 250 × 250 pixels. To further challenge the

algorithms and emphasize the performance in extremely degraded image conditions,

we used images with a starting size of 250 × 250 pixels which were normalized to a
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42, 20, 10, and 5 pixel inter-eye distance. The original annotated coordinates were

scaled as necessary to serve as the face shape coordinates for each new image size. In

each experiment and for each scale, we estimated the face shape over 10 trials using

a different training and testing partition in each case. Example detections are shown

in Figs. 2.3, 2.4, and 2.5 for the ASL, AR, and LFW databases, respectively.

Quantitative results of detection error are graphed in Fig. 2.6 as standard error

of equation (2.11) in the first row, and the normalized detection error defined by,

enormalized =
e

Inter-Eye Distance
, (2.12)

in the second row. The normalization standardizes the error rates to account for the

range of inter-eye distances. All other figures and tables report the standard error of

equation (2.11). Additional results are tabulated in Table 2.1. A more detailed view

of the trends can be seen in the cumulative error histogram plots of Figs. 2.7, 2.8,

and 2.9.

Some noticeable trends are evident from the results in Table 2.1. First, the ASL

database containing 7 subjects shows that KRR with pixel features performed best

over a variety of resolutions when detecting shape over a limited range of subjects.

Although the C1 features did not perform as well, it was important to evaluate their

performance within the manifold learning framework because it has been argued that

these features facilitate recognition of different classes of objects including shape and

texture based objects, and provide invariance to illumination [106]. While pixels

perform favorably for faces, other classes of objects may prefer the C1 representation.
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Figure 2.3: Example face shape detections for the ASL database using KRR with pixel
features. Starting from the top row we display results for 250× 250 pixel face images which
have been normalized to a 42, 20, 10, and 5 pixel inter-eye distance.

Figure 2.4: Example face shape detections for the AR face database using KRR with pixel
features. Starting from the top row we display results for 250× 250 pixel face images which
have been normalized to a 42, 20, 10, and 5 pixel inter-eye distance.
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Table 2.1: Mean Euclidean landmark error of equation (2.11) and standard deviation over
all test images in pixels for images at 250× 250 pixels which are normalized to 42, 20, 10,
and 5 pixel inter-eye distances. (a) - (c) correspond to the ASL, AR, and LFW databases,
respectively. The left column entries are defined in Fig. 2.6.

Inter-eye Distance
5 pixels 10 pixels 20 pixels 42 pixels

(a) ASL

KRR-P .23± .15 .37± .28 .62± .53 1.18± 1.10
KRR-C1 .37± .23 .62± .42 1.15± .81 2.34± 1.68
SVR-P .25± .16 .40± .31 .73± .61 1.42± 1.40
SVR-C1 .33± .23 .51± .42 .81± .76 1.59± 1.61

AAM-RIK .52± .32 .60± .40 .91± .66 1.73± 1.30
ADA-H .46± .28 .50± .32 1.18± .80 1.64± 1.12

(b) AR

KRR-P .35± .21 .57± .40 1.02± .77 2.10± 1.61
KRR-C1 .41± .28 .63± .45 1.16± .89 2.36± 1.92
SVR-P .37± .36 .63± .46 1.05± .88 2.30± 1.96
SVR-C1 .39± .29 .63± .48 1.14± .92 2.29± 1.89

AAM-RIK .57± .41 .81± .63 1.06± .86 2.02± 1.54
ADA-H .42± .27 .81± .59 1.43± 1.02 2.34± 1.83

(c) LFW

KRR-P .50± .34 .94± .68 1.78± 1.33 3.67± 2.80
KRR-C1 .57± .37 1.06± .74 1.95± 1.37 4.00± 2.88
SVR-P .51± .35 .96± .72 1.90± 1.44 4.06± 3.09
SVR-C1 .60± .40 1.07± .75 1.95± 1.41 4.07± 3.01

AAM-RIK .82± .60 1.36± .92 2.30± 2.01 3.38± 3.04
ADA-H .61± .39 1.01± .67 1.77± 1.29 3.51± 2.58
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Figure 2.5: Example face shape detections for the LFW database using KRR with pixel
features. Starting from the top row we display results for 250× 250 pixel face images which
have been normalized to a 42, 20, 10, and 5 pixel inter-eye distance.

The 5 and 10 pixel inter-eye distance results over all databases show that AAM-

RIK and adaboost with Haar features suffer when the resolution is degraded signif-

icantly. This can be explained for the AAM-RIK by the lack of precision in syn-

thesizing a face that is degraded to that magnitude. Similarly, the Haar features

are unable to precisely describe local image cues at very low resolutions. The kernel

regression based algorithms did not suffer from the degradation in resolution because

the test images are not synthesized as in the AAM-RIK, and a holistic (not local)

image representation is used. However, the AAM-RIK and adaboost methods yielded

very accurate results at higher resolutions, as supported by the AR and LFW results

in Table 2.1.

To provide a comparison to the state of the art in detailed face shape detection,

the experiments were repeated for the ASL and AR database as in the work of Ding
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(b) AR database.
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(c) LFW database.
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(d) ASL database.
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(e) AR database.
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(f) LFW database.

Figure 2.6: (a) - (c) show the mean Euclidean pixel error for each database as a function
of image size in pixels. Image size corresponds to the height and width of the face image
before rotating and scaling to a standard inter-eye distance of 42 pixels. (d) - (f) show
the normalized mean Euclidean pixel error for each database as a function of the inter-eye
distance. P and C1 denote pixel and C1 features of [106], respectively. AAM-RIK denotes
the AAM with Rotation Invariant Kernels of [51], ADA-H denotes the Adaboost regression
[133] with Haar-like features of [123], and Mean denotes taking the mean of the training
shapes as the estimate in every case.
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Figure 2.7: Cumulative pixel error histograms are plotted for the ASL database. The plots
in (a) - (c) show error rates for images which are first scaled to 50 × 50, 150 × 150, and
250× 250 pixels, then normalized to a 42 pixel inter-eye distance. (d) - (f) show error rates
for images which are first scaled to 250 × 250 pixels, then normalized to a 5, 10, and 20
pixel inter-eye distance. Legend entries are defined in Fig. 2.6.
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Figure 2.8: Cumulative pixel error histograms are plotted for the AR database. As above,
the errors in (a) - (c) are for images scaled to 50× 50, 150× 150, and 250× 250 pixels, then
normalized to a 42 pixel inter-eye distance. (d) - (f) show error rates for images which are
first scaled to 250× 250 pixels, then normalized to a 5, 10, and 20 pixel inter-eye distance.
Legend entries are defined in Fig. 2.6.
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Figure 2.9: Cumulative pixel error histograms are plotted for the LFW database. The
plots in (a) - (c) show error rates for images of 50×50, 150×150, and 250×250 pixels, then
normalized to a 42 pixel inter-eye distance. (d) - (f) show error rates for images which are
first scaled to 250× 250 pixels, then normalized to a 5, 10, and 20 pixel inter-eye distance.
Legend entries are defined in Fig. 2.6.
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and Martinez [27]. Their algorithm relies heavily on color and edge cues, so higher

resolution images are required. Therefore, we performed our eye detection in the

images which were kept at the original resolution. After eye detection, the faces were

scaled to an inter-eye distance of 120 pixels for the ASL database, and 111 pixels for

the AR Face database, corresponding to the average inter-eye distances within the

databases at the original resolution. In [27], the authors report an average pixel error

of 6.9 pixels with a standard deviation of 1.5 for the ASL database, and an average

pixel error of 8.4 pixels with a standard deviation of 1.2 for a combination of 400

images from the AR database and 800 images from the XM2VTS database [78]. We

achieved an average error rate of 4.30 pixels with a standard deviation of 3.80 for the

ASL database, and an average error rate of 6.97 pixels with a standard deviation of

5.61 for the AR database.

The error rates favor the algorithm presented, but the comparison is not easy to

make for a few reasons. Namely, the algorithm in [27] is not based on regression,

so subsets of the database were not sequestered for testing. Therefore, evaluation

was not performed using the same images. This is especially the case for the AR

results which Ding and Martinez pool with a database not used here. However,

the comparison along with the others presented demonstrates that we have achieved

performances above the state of the art.

To illustrate the performance with occlusions, we refer the reader to Fig. 2.3

which contains sample results from the ASL database. These are particular examples

where occlusions are prominent in some of the fiducials. The unoccluded fiducials are

mostly unaffected, which is expected since these fiducial shapes are regressed with

the local texture information. In largely occluded regions such as the mouth in the
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5th column, there is a good shape guess. We can achieve this because of the shape

model learned from the training samples.

To emphasize the effect of degrading the image resolution, results for each database

are shown for images which are normalized to an inter-eye distance of 42, 20, 10, and

5 pixels before doing the shape detection. By comparing the results for the degraded

resolutions to the original resolution, we can see that the accuracy degrades, but

marginally compared to the reduction in resolution. This is not the case for the

AAM-RIK and ADA-H, which break down as the inter-eye distance gets too small.

In some cases, the images with a 5 pixel inter-eye distance appear to have a large

error (such as for the eye shape). However, this results from the image interpolation

which produce the appearance of eyes which sag under the true eye positions. You

can see this effect if you compare the 5 pixel inter-eye distance images to the 42 pixel

inter-eye distance images.

To illustrate the performance in a more challenging setting, where the manifold

must generalize across subjects with more extreme facial expressions, we show sample

results from the AR face database in Fig. 2.4. We can see from some examples that

the results are not as accurate as the previous database. This is also clear from the

results in Fig. 2.6 and Table 2.1. The mouth and jawline are not aligned perfectly,

but the estimate is very close.

For the realistic setting where there is little control over the pose, illumination,

photographic setting, or even identity of the subject, we show results from the LFW

database in Fig. 2.5. Much like the results in Fig. 2.3, the detection is not as precise

as in the ASL database (zooming into the image may illustrate this better). However,

the estimate is still very accurate, as seen in Fig. 2.6 and Table 2.1. Of particular
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interest is the 3rd column, which has very large occlusions. Much like in the ASL

database, a good estimate is given.

2.3.3 Implementation Details

Faces are first detected using the openCV implementation [13] of the Viola and

Jones face detector [123]. The faces are scaled to a standard size following the ap-

proach of Huang et al. [61]. A region 2.2 times the detected face size is cropped

around the detected face position and scaled to a standard square size, then normal-

ized as described in Section 2.2.1. We define the face shape by a set of 130 landmarks

delineating the eyes, eyebrows, nose, mouth, and jaw. We use 5-fold cross-validation

with a grid search on the training data to tune the crop size for x, and the regression

parameters. We choose the parameters which minimize the mean squared error of

estimating the shape parameters y over the 5 validation sets. The parameters are

obtained in the first experimental trial, and used for the remaining trials. The joint

distribution of the eye position detection error is then estimated using the estimation

errors from the cross-validation trial corresponding to the optimal parameters.

To simplify the computation of the proposed approach we proceed as follows.

Shape modes are stored for faster function evaluation since they only depend on the

training data. In addition, the κ(x) in the KRR solution given in (2.2) is arranged

into a matrix for all training samples, allowing batch shape detection in all images.

Our MATLAB implementation which utilizes this batch procedure and stores the

learned shape modes can detect shapes at .084 seconds per image, or 11.9 frames

per second on a 2.4 GHz Intel Core 2 Duo with 4 GB RAM. This timing includes

the eye detection and image rotation, and was conducted on the ASL dataset with
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150 × 150 pixel images which are normalized to a 20 pixel inter-eye distance. 60%

of the images were used for training, with the detection being performed on the

remaining 40%. Faster running times can be achieved by storing the inverted matrix

and Gram matrix of the KRR solution since they only depend on the training data.

ε−SVR yields a sparser model than KRR which can also be stored for fast function

evaluation. Unfortunately, it requires we train a separate model for each shape mode.

The nonlinear AAM implementations is based on [51] which employs nonlinear

shape and texture models through the use of Rotation Invariant Kernels (RIK) [52].

The model is trained separately for the different scales and resolution, using the

training image subsets which are normalized to the size and resolution of the testing

set. The kernel parameters are selected as suggested by the authors. In testing,

we first detect and normalize the images using the approach described in Section

2.2.1, where KRR with pixel features is employed since it consistently yields accurate

results. Then, we initialize the AAM with 10 random training face shapes which

are aligned in position and scale with the test image, and update the shape estimate

until convergence or a maximum of 30 iterations. Careful checks were made to prevent

divergence. The final shape estimate is given by the converged appearance model that

best approximates the face texture.

The Adaboost implementation is based on the work of [133], where piecewise

functions of single Haar feature outputs are selected in a greedy manner to build a

strong learner for an image based regression task. At each round of boosting, the

weak learner which most reduces the residual error is added to the strong learner.

Shrinkage is used to prevent over-fitting. Specifically, each weak learner is scaled by

a real positive value less than 1 before being added to the strong learner. The strong
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learner has several parameters: the type and number of weak learners to use, and

the shrinkage value. We choose a strong learner comprising of 400 weak learners with

a shrinkage factor of .1. Piecewise linear functions are employed as weak learners.

For a given Haar feature, the piecewise functions are split into evenly spaced bins

by 40 knots according to the maximum range of that Haar feature output from the

training data. Each piecewise linear function for each bin is obtained by fitting the

output from a single Haar feature to the residual error using (2.1) with regularization

parameter λ = .1/n.

The training and testing images are first normalized to an upright view and stan-

dard scale using the approach described in Section 2.2.1, where KRR with pixel fea-

tures is employed since it consistently yields accurate results. Then, a strong learner

is learned which maps these normalized face images to their associated shape modes.

Similarly to the ε−SVR implementation, the strong learner is an ensemble of single

output strong learners for each shape mode. Shape modes are selected to preserve

90% of the shape variance, as described in Section 2.2.3.

2.4 Conclusion

We have presented a new algorithm for deformable shape detection that is based

on manifold learning through nonlinear regression. By taking this approach, the

algorithm has the benefits of generative and discriminative methods while avoiding

the major drawbacks associated with generative, energy minimization based, and

sliding window methods. Our algorithm is non-iterative and does not require shapes

be defined by salient edges. Therefore, as we have demonstrated experimentally, the

algorithm can be made to work at extremely coarse resolutions. Additionally, we learn
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a shape model based on training data which ensures a reasonable shape estimate even

in the case of large occlusions.

Although we presented certain feature spaces and regression techniques, these are

only particular choices for a general shape detection framework based on manifold

learning with supervised training data. The learned manifold relates the image feature

space to the corresponding shape space. What is important about the feature space

used is that it preserves the local image information. As we have demonstrated, the

framework presented is flexible enough to model deformable faces, and can be trained

reliably given the constraints on the training data.
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CHAPTER 3

PROBABILISTIC GRAPHS FOR DENSE SHAPE
DETECTION

As discussed in the previous chapter, shape detection is an important problem

in computer vision whose the goal is to accurately detect the 2D position of specific

shape landmarks, or fiducials, in an image. Some applications such as 3D reconstruc-

tion and the recognition of facial expressions require that the deformable shape be

described by a dense set of salient and non-salient landmarks for satisfactory results.

Unfortunately, current detection algorithms are typically tailored to locating only a

few salient landmarks [39, 47, 35]. Some exceptions are the 3-Dimensional Morphable

Model (3DMM) [11] and the 3D model of [49] which find a dense set of face land-

marks. However, these methods require a 3D database to construct the model and,

thus, cannot be learned directly from an image collection.

Here we propose a novel algorithm to accurately detect a dense set of salient and

non-salient landmarks in an image. It does not require 3D object databases and

can be used to design landmark detectors for different types of objects – eg, faces,

hands, and structures in medical images. Our approach utilizes the fact that many

object classes exhibit a homogeneous structure such that any detected landmark

provides contextual information that facilitates the detection of the other landmarks.
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(a) From salient to non-
salient features

(b) Standard detectors (c) Our dense detection

Figure 3.1: Can you find the 10 faces in (a)? These faces are difficult to see until a
face feature is detected (eg, a nose); then the entire face becomes salient. (b) The
output of a standard face landmark detector is typically restricted to a few salient
points. (c) Our novel method provides dense detections that include both salient and
non-salient landmarks.

For instance, Fig.3.1(a) shows a classical example with human faces as objects of

interest. While at first sight one may not perceive the 10 faces in this image, once a

few fiducials have been detected (eg, an eye or the nose), the remaining facial parts

become readily apparent. Thus, the location of a fiducial provides information on

where to find the others.

Our method hinges on the value of context - each fiducial provides information

about the others. By combining all the sources of information, we can form a consen-

sus about the whole shape. This approach of combining different contextual sources

of information has been a central theme of computer vision since the late 1970s when

research was focused on scene interpretation: determining the class and 3D position

of objects producing an image. The computer vision pioneers understood that using

context appropriately is crucial to solving the problem.
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The development of ACRONYM [14] which was later refined by Brooks [15]

demonstrated that very noisy low level features such as edges could be used to inter-

pret a scene as long as the features were considered in the context of a detailed 3D

object model. Real objects were modeled as generalized cones with specific geometric

and algebraic constraints that were used to join and filter the coarse image features

in a meaningful way. In the same vein, Hanson and Riseman developed the VISIONS

system [54] for scene understanding which used domain specific knowledge to rea-

son about low level features in an image. Barrow and Tenenbaum’s Intrinsic Images

[7] were also concerned with understanding the inherent 3D structures producing an

image, but relied more on constraints associated with the physical world and image

acquisition than detailed high level models.

A decade later, Strat and Fischler developed CONDOR [117] which interprets

scenes by using simple features with a dictionary of context sets to interpret natural

scenes. Context sets consist of information that is known about the world, relation-

ships between items in the world, and how to proceed given certain conditions are met

in an image. The algorithm sequentially invokes and refines the active context sets

until a consistent image interpretation is found. Although the algorithms are quite

different, they all emphasize the value of context in scene interpretation through

high level models and physical constraints associated with the real world and image

acquisition.

Our method imposes such constraints through a probabilistic graphical model.

The relationship between every pair of landmark positions is encoded by the edges a

graph, where each node represents a landmark position and its local texture. The local

texture information of salient landmarks allow them to be detected reliably, whereas
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Figure 3.2: Illustration of proposed methodology: The ’Graph Model’ block shows
the graph learning phase of the method, where we model the relationship between
salient and non-salient landmarks as a probabilistic graph. Thicker edges represent
larger weights between fiducials. Only a subset of edges of the fully connected graph
are shown. The ’Test Image’ block highlights cases of misdetections and multiple
detections for a particular fiducial. The ’Shape Detection’ block shows that the graph
model is used along with the local feature detections to determine the most probable
shape configuration.

non-salient landmark detection is unreliable from just the local texture. Fortunately,

the reliable detections constrain the position of non-salient landmarks and vice versa.

In addition, the coarsely localized non-salient fiducials aid estimation of other non-

salient and misdetected landmarks. As a key result, our detection algorithm can

robustly estimate the positions of fiducials in areas such as face cheeks, where a

simple local feature detector would generally fail, Fig.3.1(b)-(c). Hence, the resulting

algorithm can be used to estimate dense landmark maps in 2D images as in 3DMMs,

without requiring prior 3D models.
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Our proposed methodology is depicted in Figure 3.2. Using our graphical model,

landmark detection amounts to maximizing the joint probability of the graph’s nodes

in an image. To accomplish this, we propose a sampling algorithm which selects the

most likely fiducial positions given a set of candidate detections. This algorithm can

deal with missing detections, false positives, and occlusions. In addition, we show how

to augment the graph and use the original low-level detections to infer many more

landmark coordinates in an incremental fashion. Our experimental results demon-

strate accurate, dense landmark detections within and across different databases.

3.1 Related Work

Since the 1970s computer vision has been concerned with the recognition of a

particular person’s face versus another [6, 55], due to the social significance of faces.

These recognition algorithms, similar to the current methods, compare a standardized

probe face image to a database of face candidates to find the best match. Standard-

ization typically required precise detection of the face position and scale, and many

algorithms were developed to do this automatically. They can be broadly categorized

as knowledge based, feature based, template based, and appearance based [127]. See

Yang et al. [127] for a survey.

Knowledge based algorithms are top-down methods that define a set of rules for

identifying the face from clutter based on knowledge about the face, such as sym-

metry. These methods require a hand crafted set of rules for locating the face and

removing false detections. For example, Yang and Huang [126] use rules obtained

from low-resolution, or mosaic face images that preserve the essential face structure.
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An example rule is that the center part of the mosaic face has a uniform color, corre-

sponding to the blurring of the skin color at the center of the face. Edge information

is used to remove incorrect detections. Kotropoulos and Pitas [67] also construct rules

using mosaic images. The drawback of knowledge based methods is defining a set of

rules that reliably discriminate faces from non-face patterns.

The feature based methods, on the other had, are bottom-up approaches that as-

sume there are some distinctive features that facilitate detection. Edges, for example,

have been used to detect the face outline [109]. Another approach is to detect salient

fiducials such as eyes and nostrils using a low level feature detector, and determine

the most plausible configuration of all fiducials using random graph matching [68].

Other researchers have relied on skin or hair texture in the images [18, 5, 60]. The

drawback of these methods is that they do not deal well with occlusions or other

image artifacts that disrupt the face appearance.

Template based methods rely on a characteristic face pattern called a template.

The templates are predefined by experts, and the existence of a face in the image is

determined based on the correlation of the template with a an image patch. Templates

have been defined in terms of edges [98], silhouettes [100], and relative intensities [101]

to name a few.

The appearance based methods take the idea of templates a step further by learn-

ing the template from many example faces, instead of relying on an expert to define

the template. The benefit of appearance methods versus the standard template ap-

proaches is that the appearance methods automatically discover the relevant statistics

of the face that distinguish it from non-faces. The appearance approaches typically

define an appearance model in terms of a pdf learned from many face examples, or a
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discriminative function learned from face and non-face examplex. For example, the

Active Appearance Models (AAM) [20] and 3DMM [11] use a probabilistic shape and

texture model learned from a set of annotated training samples to detect faces in

images. The other approach is to train a classifier to discriminate between face and

non-face objects, and scan the entire image for faces. Boosted classifiers have become

especially popular because of their real time performance [123].

The algorithm presented in this chapter belongs to the appearance based methods

and is concerned with the precise detection of a dense set of landmarks around the

face. Previous methods such as AAM and 3DMM are able to detect fiducial points,

but such models cannot detect variations beyond what is specified in the training

set. Furthermore, the global shape model often favors a configuration similar to the

mean shape that fails to capture subtle important changes such as eye blinks or single

eyebrow motion. On the other hand, algorithms that rely on fiducial detections are

able to fit salient key points reliably without being overconstrained by a global model.

However, these approaches can yield unrealistic shape estimates when the global shape

is not constrained. These methods have advanced considerably in recent years, with

algorithms that even rival human manual annotations [27, 81, 132, 69, 118]. However,

they provide a very limited number of fiducials around salient features such as the

eyes, nose, and mouth, and most require high-quality images.

Our new method overcomes the above shortcomings by utilizing the positive as-

pects of fiducial detection and probabilistic shape and texture model approaches. We

take advantage of advances on local feature detection to ensure that subtle shape

changes are not missed by our method. Each landmark position takes into account

the position of all other locally-detected fiducials to generate a plausible configuration
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for the whole set of detected points. If some landmarks cannot be detected or are

misdetected by the local feature detector, the other fiducials will constrain estimation

of their positions.

Graphical models have previously been used to guide the fiducial position estima-

tion, although using different approaches which are limited to a very small number of

landmarks. Felzenszwalb and Huttenlocher [39] use a tree structured graph to infer

the location of 5 face fiducials. For tree based graphs, a poorly localized root node

negatively influences all daughter nodes. In contrast, our model represents a dense

interconnection of landmarks. Every node has influence from all other shape land-

marks so the effect of a few poorly localized nodes is circumvented by information

from other nodes in the graph.

In another work, Everingham et al. [35] model the joint probability of 9 fiducial

positions in faces using a mixture of Gaussian trees. Fiducial are found using a dis-

criminative model with Haar-like features. This algorithm only detects stable points

(salient features) and the graph is solely used for robustness to different poses. Gu

and Kanade [47] use local feature detections to generate a set of candidate positions

for each fiducial, and then select the most probable set of fiducials using a Bayesian

model which encodes the object pose and shape. Their algorithm is initialized using

an AAM and a set of fiducials are localized around each landmark. Our algorithm

also relies on a set of local feature detections but the highly inter-connected structure

of our graph allows us to infer positions of non-salient features while being more ro-

bust to occlusions. In general the proposed method outperforms these probabilistic

graphical models because it can infer potentially dozens of fiducial positions including

non-salient ones. In addition, it easily extends to non-face objects.
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3.2 Probabilistic Graphical Model

Many natural objects are highly structured. Human faces, for example, exhibit

strong relationships between the positions of different parts of the face; one can

estimate the right eye position reliably given the position of the left eye and the

nose by symmetry. In this and other objects, the information from each detected

fiducial can be used to infer all other landmarks including those which are unseen,

misdetected, or poorly localized. Given this insight, an appropriate modeling scheme

describes the pairwise relationship between all fiducials in an object as well as the

global configuration. We model the affinity between two fiducials i and j using a

potential function Φij, and the global configuration using the potential function β. β

ensures that the global configuration is reasonable. The logical way to combine these

sources of information is using a probabilistic graph.

We define the joint probability of p fiducial positions as,

Ppos(X) = β(X)
1

Zpos

i=p,j<i∏
i=1,j=1

Φij(xi, xj), (3.1)

where X encodes the set of coordinates x1, ..., xp, xi ∈ R2 has the 2D coordinate

of fiducial i, Zpos is called the partition function which makes (3.1) behave as a

probability density function (pdf), and β(X) = exp
(
−α

2 (X̂ − µ)TΣ−1(X̂ − µ)
)

is the

Mahalanobis distance from the translated and scale invariant shape X̂ to the mean

shape, µ. To obtain X̂, we centered the shape to the origin and then normalize by

its Frobenius norm. µ = 1
N

∑
X̂i and Σ = 1

N

∑
(X̂i − µ)(X̂i − µ)T are the mean and

the covariance matrix of the training samples. The parameter α ∈ [0, 1] controls the

penalty of differing from the mean shape.
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Assuming that the object is detected and scaled to a standard size, the displace-

ment between two fiducials can be modeled as a bivariate normal distribution. Al-

though displacement between different pairs of fiducial may vary in scale, the correla-

tions may be the same. Therefore, it is important to use a normalized distance, such

as the Mahalanobis distance, when measuring the displacement. Thus, the potential

functions Φij(·, ·) are defined as

Φij(xi, xj) = exp
(
−(1− α)w̄ij(∆ij − µij)TΣ−1

ij (∆ij − µij)
)
, (3.2)

where w̄ij is the weight of the edge between fiducials xi and xj, ∆ij = (xi − xj) ∈ R2

is the 2D pairwise distances between landmarks i and j for a particular shape, and

the parameters µij and Σij are the sample mean and sample covariance of ∆ij which

are estimated from the training data. The relationship between landmark positions

is encoded as pairwise distances to make the model translation invariant. Since the

quadratic term in Φij(·, ·) is a Mahalanobis distance, it is maximum when ∆ij = µij,

and monotonically decreases from there.

In the case of face shapes, the edge connecting the eye to the eyebrow should have

a larger weight than the edge connecting the eye to the mouth because the eye more

strongly constraints the position of the eyebrow than the mouth. Therefore, we scale

the Mahalanobis distances by normalized positive scalar edge weights w̄ij ∈ [0, 1],

to account for this type of variation. The normalized edge weights are defined as

w̄ij =
wij∑k=p

k=1

∑l<k
l=1 wkl

, where the edge weights wij specify the relative importance of the

edges in the graph.

Specifically, large wij means the relationship between fiducials ij will be empha-

sized relative to pairs with smaller wij in (3.2). Because the graph encodes the pairwise
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structure of the shape in order to constrain the low level detections, an edge connect-

ing nodes ij should have a large weight if knowing the position of node i strongly

constrains the position of node j. The degree to which i constrains j is specified

by the sum of the eigenvalues of the covariance matrix Σij because the eigenvalues

describe the variance along the principal axes of the joint distribution N(µij,Σij). A

larger variance means we know less about the relative positions of fiducials; the dis-

tance between connected fiducials can take on a very wide range of values. However,

a smaller variance means the relative position of fiducial j can be inferred with more

certainty. Therefore, we set wij = 1
‖Σij‖F

by noting that ‖Σij‖F equals the square root

of the sum of the eigenvalues of Σij.

The graph described by equation (3.1) is sufficient to constrain shape estimates to

be reasonable, but it is also important to consider the local texture. This is achieved

by weighing the pdf by the probability that each landmark is correctly localized, where

each texture implies a probability of correct localization. This texture weighting im-

plies that the textures for each fiducial are assumed to be conditionally independent.

The graph describing the joint pdf of the landmark positions and textures is defined

as,

P (X) =
1

Z
β(X)

i=p,j<i∏
i=1,j=1

Φij(xi, xj)

p∏
k=1

γk(xk), (3.3)

where γi(·) is a potential function of the ith fiducial’s local texture. More formally,

these functions γi are the normalized confidences of the local detection. We calculate

that confidence using a kernel based density estimation algorithm [46], and normalize

such that γ(·) behave as a probability.
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3.3 Testing Procedure

3.3.1 Fiducial Detection

Fiducial position estimation relies on a set of local detections. The local detections

are a result of evaluating a classifier for each fiducial at each image patch within the

image regions expected to contain the associated fiducial. The regions are determined

by the training data. The classifiers rely on features extracted from the image patches,

and are based on the local texture or context features. Salient points like corners of the

eyes prefer local texture (pixel value features) as in [27], while non-salient points such

as points in the cheeks require a more global texture feature [108]. The classifiers are

learned using Kernel Linear Discriminant Analysis (KLDA) [79, 8] and the annotated

training data. KLDA finds a low-dimensional projection of the image features x ∈ Rd

which maximally separates samples from different classes while grouping members of

the same class. We use the Radial Basis Function (RBF) kernel defined as k(xi,xj) =

exp
(
−‖xi−xj‖22

2σ2

)
, where σ is a parameter to select, and xi are the vectorized sample

images. The kernel parameter is optimized using the criterion of [128].

Each local detector returns a set of candidate positions Di = {x̂1
i , ..., x̂

mi
i }, where

x̂ji is the jth candidate position of fiducial i, and mi is the number of candidate

detections for fiducial i. These candidate detections consisting of their position and

corresponding texture provide information about the unknown true fiducial positions

in the graph. The main task of this model is to find the set of candidate detections

that maximize the graph probability, given their position and local texture. More

formally, the objective is

X∗ = arg max
x1,...,xp

P (X), s.t. xi ∈ Di, i = 1 . . . p. (3.4)
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3.3.2 Estimation of the Fiducials

Estimating fiducial positions amounts to optimizing the objective function of equa-

tion (3.4). The size of our search space depends on the number of candidates per

fiducial. This space is very large and evaluating the probability of each configuration

requires
∏p

i=1 mi trials, which is computationally expensive. To overcome this prob-

lem, we first focus our search on a reduced set of highly probable configurations. The

most likely configuration initializes the second stage, a belief propagation algorithm,

that provides the final shape estimate.

To find a set of likely fiducial configurations, the optimization algorithm assumes

that at each iteration, p− 1 “known” fiducials (salient and non salient) are coarsely

detected. We then randomly sample for the pth fiducial knowing that its pdf is

conditioned by the “known” ones. This process is iterated for a different set of fiducials

until a likely global configuration is found. More formally, to find the x̂jii , i = 1 . . . p,

which maximizes (3.3), we initialize xi randomly to one of the local detections in

Di, i = 1 . . . p. In the first stage, we sequentially update xk, k = 1 . . . p, by taking a

random sample from the conditional pdf of xk given all other nodes:

P (xk|x−k) ∝ γk(xk) exp

(
−1− α

n

∑
j 6=k

w̄kj(∆kj − µkj)TΣ−1
kj (∆kj − µkj)

+
α

2
xTkΣ−kkx̂k

)
, (3.5)

where x−k = {x1, x2, . . . , xk−1, xk+1 . . . xp}, x̂ is the kth fiducial of X̂, ∆kj = xk − xj

and Σ−ji is the inverse of the submatrix that measures the covariance of the ith and

jth fiducial of scale and translation invariant shape X̂. This procedure is repeated

for all the fiducials xk to generate a sample X̃i, where i = 1, · · · ,maxIter. Note
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that the conditional pdf of equation (3.5) can be calculated explicitly and normalized

for the set of discrete candidate positions. We store the final configuration and the

corresponding probability from equation (3.3) after every iteration.

To be robust to empty and false positive candidates resulting from occluded or

noisy images, we use the probabilistic graph of equation (3.1) to augment the sets Di

with the maximum-likelihood (ML) estimate of each fiducial position xi given x−i.

Taking the logarithm of equation (3.1) yields a quadratic function. Taking derivatives,

we find that

xMLE
k = ((1− α)Gp + αGs)

−1((1− α)Wp + αWs) (3.6)

where

Gp =

(∑
j 6=k

w̄kjΣ
−1
kj

)−1

, Gs = scΣ
−kk, sc = ‖X‖2

Wp =

(∑
j 6=k

[
w̄kjΣ

−1
kj (xj − µkj)

])
, Ws = sc

(
Σ−kkµk +

∑
j 6=k

Σ−kj(x̂k − µk)

)
.

µk is the kth coordinate of µ + tx, where tx is the centroid of X. Note that this

procedure without taking into account xMLE
k is commonly know as a Gibbs Sampling

[44].

In the second phase of the optimization, we initialize with the previously sampled

configuration X̃i that maximizes equation (3.3), and repeat the sequential procedure

until convergence or a maximum number of iterations. However, instead of draw-

ing random samples from the conditional pdf, we select the value xk ∈ Dk which

maximizes equation (3.3). The procedure is summarized in algorithm 1.
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Algorithm 1 Inference Algorithm
Input={D1, ..., Dp}
for i = 1 to p do

Set x0
i = random sample of D̃i

end for
for stage = sampling to beliefpropagation do

for t = 1 to maxiter do
for i = 1 to p do

Set D̃i =
{
Di, x

MLE
i

}
Calculate P (xt−1

i |xt−1
−i ) using (3.5) and the candidates D̃i

if stage = sampling then
Let xti be a random sample of P (xi|x−i)

else
Let xti be arg max

x̂
j
i∈D̃i

P (xt−1
i |xt−1

−i )

end if
Let xt−1

i → xti
end for

end for
Set x0 as the xi that maximize (3.3)

end for

3.4 Experiments

3.4.1 Face landmark detection

We first evaluate the proposed algorithm on three face databases: AR [74], Labeled

Faces in the Wild (LFW) [61], and the XM2VTS database [77]. Faces are roughly

localized in position and scale using the Viola-Jones face detector, then cropped and

scaled to 150×150 pixels, corresponding to a mean inter-eye distance of approximately

15 pixels. For the AR database, we train with 448 images, and test on 448 images

containing subjects not found in the training set. For the LFW database, we train

with 1027 images, and test on 500 images. For the XM2VTS database, we train with

448 images, and test on 350 images containing subjects not found in the training set.

We also use the model trained with the LFW database to detect fiducials on the AR

and XM2VTS databases. The error is measured as the Euclidean distance from the

ground truth fiducial positions (ie, manual markings) to the estimated position for a
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Figure 3.3: We show example results of the derived approach. From top to bottom,
the rows correspond to the shape detections for the AR database [74], the LFW
database [61], and the XM2VTS database [77]. The database contains face images
in unconstrained environments. Results show robustness to occlusions, pose, and
lighting.

total of 50 fiducials over all test images. Results are compared to those of the AAM

algorithm.

Example detections using our algorithm are shown in Fig. 3.3 with error his-

tograms shown in Fig. 3.4. The first three histograms are for within database testing.

That is, the training and testing set, although disjoint, are from the same database.

The last three histograms are for across database experiments. In this case, we em-

ployed the training set of one database and do the testing on the images of the other

specified database. These are the most challenging and interesting experiments. Fig-

ure 3.5 shows an additional visual comparison between our method, [20] and [35].
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Figure 3.4: Error histograms (Euclidean distance, in pixels) for a total of 50 detected
fiducial points versus the ground truth of the testing sets. The ground truth positions
were obtained by manual annotation. PGA denotes our new probabilistic graph
algorithm, while AAM denotes the classical AAM.

(a) Our Method (b) AAM (c) Result of [35]

Figure 3.5: Comparison of our algorithm with AAM [20] and the local detector of
[35]. Our method provides more precise detections than the AAM, and many more
fiducial points than the local feature detector.
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Our algorithm outperforms the AAM in every case. For the case of constrained

databases such as the XM2VTS and AR databases, our algorithm slightly outper-

forms the AAM. However, for the case of the unconstrained LFW database, and the

across-database experiments, our algorithm performs significantly better than the

AAM. This reiterates the problem of learning a global probabilistic shape and tex-

ture model. It also verifies the benefit of using a probabilistic graphical combined

with local detection of fiducials.

We also compare our method to the algorithm of [35] on the AR and LFW

databases for the 9 fiducial points detected by their algorithm. The implemen-

tation was obtained from the authors’ website, and was already trained. On the

AR database, our algorithm achieves an error with mean and standard deviation of

1.5315± 1.2751 pixels while [35] achieves an error rate of 1.9189± 1.4619 pixels. On

the LFW database, our algorithm achieves an error with mean and standard deviation

of 2.5052 ± 1.6972 pixels, while [35] obtains an error rate of 2.2801 ± 4.1774 pixels.

On the XM2VTS database, our algorithm achieves an error with mean and standard

deviation of 1.5561±1.7515 pixels, while [35] obtains an error rate of 1.7922+−1.8497

pixels.In summary our method provides more accurate detections and additional set

of non-salient landmarks.

3.4.2 Cardiac MRI

To demonstrate the flexibility of our method, we now show detections of landmarks

describing the epicardial and endocardial contours of the left-ventricle (LV) on cardiac

magnetic resonance images (MRI). Our image database includes images of 8 subjects

with a total of 160 images that were rescaled to 100 × 100 pixels. For each subject,
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Figure 3.6: Heart Experiments. (a) Detected landmarks delineating the epicardial
and endocardial contours of the LV in cardiac MRI (best seen in color). (b) Error his-
togram (Euclidean distances, in pixels) for 22 detected landmarks versus the ground
truth of the testing images.

20 images depict the contraction and relaxation of the LV in short-axis view during a

complete cardiac cycle. Each image was manually marked by a cardiologist with 22

landmarks around the LV. We randomly split the data into 100 images for training

and 60 images for testing. Fig. 3.6(a) shows examples of detected landmarks and the

approximate LV boundaries for 4 different subjects. Note that the detected contours

correctly segment papillary muscles and trabeculae together with the interior blood

pool of the LV. The boundaries were obtained by interpolating the Fourier transform

of sequences of landmark coordinates represented as complex numbers, li = xi +

yi
√
−1. Following the same comparison procedure of Section 3.4.1, our algorithm

outperforms AAM with a mean error and standard deviation of 2.4049±2.2949 pixels

while AAM achieves an error rate of 5.0019±3.5206 pixels. The error histograms are

shown in Fig. 3.6(b).
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Figure 3.7: Hand Experiments on [115]. (a) Detected landmarks delineating the shape
of the Hand. (b) Error histogram (Euclidean distances, in pixels) for 52 detected
landmarks versus the ground truth of the testing images.

3.4.3 Hand Shapes

To further challenge the algorithm, we detected 52 landmarks describing the hand

contour. The image database of [115] contains 40 images of 4 subjects showing differ-

ent hand shapes. We rescaled the images to 100× 100 pixels, then for 3 folds of cross

validation, we randomly selected 30 images for training and 10 images for testing.

Fig. 3.7(a) shows examples of the detected landmarks and the approximate contour

of the hand.

Following the same comparison procedure of Section 3.4.1 and combining the 30

testing results of all cross validation folds, our algorithm outperforms AAM with a

mean error and standard deviation of 1.8805± 2.3707 pixels while AAM achieves an

error rate of 3.5008± 3.0955 pixels. The error histograms are shown in Fig. 3.7(b).
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3.4.4 Incremental Learning: Inferring Additional Landmarks

So far we have shown two cases where the algorithm can be used for detecting

shapes having salient and non-salient landmarks. This is sufficient for most applica-

tions, but some require a shape representation with many more landmarks. Given

the assumption that a set of localized fiducials constrains the position of other shape

landmarks, we should be able to accurately predict the position of m >> p fiducials

based on a localized subset of p fiducials obtained using the above approach. To

achieve this, note that equation (3.6) only relies on the shape part of the graphical

model (no reliance on texture). Therefore, we can learn the parameters for an m node

graph from an annotated set of images, and simply estimate the position of each of

the undetected fiducials as the ML estimate of that fiducial position given the position

of the p previously detected fiducials using equation (3.6). Fig. 3.8 shows the much

denser shape detection achieved using the 50 fiducial detections of Fig. 3.3 and an

augmented shape model. Note that no local feature detection or iterative sampling

was done to infer the much denser set of landmarks.

3.5 Conclusion

We have presented a new algorithm for detecting a dense set of salient and non-

salient landmarks in images of a deformable object. This method exploits the fact

that each landmark position constrains the position of other landmarks on an object.

In our model, the pairwise relationships between landmarks is naturally encoded in

the nodes and edges of a probabilistic graph. Given a set of candidate landmarks

provided by local detectors, our algorithm selects the set of candidate detections that

maximize the joint probability of the graph. Experimental results including training

56



Figure 3.8: We show a denser set of fiducial positions which were inferred using the
detections from Fig. 3.3 and an expanded probabilistic graph as in Section 3.4.4.

and testing across different datasets show that our method outperforms specialized,

salient feature detectors as well as AAMs. Besides being more accurate, note that

our method also provides dense detections and is not restricted to faces.
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CHAPTER 4

IDENTIFYING RELEVANT CATEGORY LEARNING
VARIABLES

Human behavior can be strikingly complex, making the inferences about the un-

derlying cognitive and neural processes a daunting task. One way of alleviating the

problem is to use methods that, due to high sampling rates, produce large volumes

of data per subject per trial. For example, eye tracking while meeting this crite-

rion, is easy to use and can be employed with a wide range of human participants.

Furthermore, eye movements are closely linked to attention and use the same neural

circuitry as shifts of attention [22]. This tight link between eye movements and at-

tention as well as its high temporal fidelity make eye tracking an excellent tool for

studying phenomena such as visual attention, categorization, category learning, and

many others. This leaves us with the task of identifying those aspects of the rich

stream of data produced by modern eye trackers that are best suited for answering

a given scientific question. Variables as varied as saccade latency, fixation frequency

or density, or dwell time on a particular area of interest (AOI) have been used in

the existing literature. Here we introduce a new principled method that allows us to

identify the most useful eye tracking variables fully automatically. We demonstrate
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our method with an object categorization task. We first verify the method with adult

subjects and then apply it to data from infants.

Categorization is the process of forming an equivalence class, such that discrim-

inable entities elicit a common representation and/or a common response. While

category learning exhibits early onset [92], relatively little is known about the under-

lying mechanism and the development of early categorization. The primary reason

is the limited duration of infants’ cooperation, yielding only a small number of data

points per participant. These limitations have restricted researchers’ ability to an-

swer fundamental questions about categorization in infants: How do infants learn a

category? And does this process undergo development?

Analyses of eye movements may help solve some of these problems. Eye move-

ments are tightly linked to visual attention (see Rayner, 1998, for a review) and they

yield multiple (albeit not necessarily independent) data points even for relatively short

trial durations. Therefore, analyses of eye movements can provide critical information

of how attention allocation changes in the course of category learning. However, eye

tracking results in a large amount of data, and it is not clear a priori what (if any)

components of eye movement are related to category learning. As a result, eye track-

ing researchers are free to choose from a large set of variables without a common set

of principles for deciding which or how many variables to analyze. In the following,

we review the infant category learning eye tracking literature in order to substanti-

ate this claim. Given the limited number of eye tracking categorization studies with

infants, we take a broader approach and review studies that examine categorization,

object completion, and visual attention.
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One variable that has been used across a variety of tasks is saccade latency [3, 62].

For example, Johnson, Amso, and Slemmer (2003) examined whether learning affects

object representations in infancy. Four- and six-month-old infants were presented

with an object that moved behind an occluder and then reemerged on the other side

of the occluder. The researchers reasoned that if babies maintain the existence of the

occluded object, they should anticipate the object to reemerge from the occluder. In

this case, participants should exhibit a faster eye movement to the point of reemer-

gence than if they do not anticipate the object. In two other studies [2, 4], researchers

used saccade latency to examine the development of visual selection. Participants (3-

, 6-, and 9-month-olds and adults) were presented with a Spatial Negative Priming

(SNP) paradigm. On a given trial they were shown an attention grabbing target in

Location 1 and a discreet distracter in Location 2. On the next trial, they were either

shown the target in Location 2 (a negative priming probe) or in Location 3 (a control

trial). SNP was inferred from greater saccade latency on the probe trials than on the

control trials.

Other potentially informative variables are (a) frequencies of fixations per unit of

time within one or more Areas of Interest (AOI), (b) dwell times within one or more

AOIs, and (c) frequencies of saccades within and between AOIs [64]. In one study,

Johnson and colleagues (2004) examined the development of object unity perception

in infancy using both behavioral and eye tracking data. In the task, participants were

habituated to a rod moving behind an occluder. After participants habituated, the

occluder was removed to reveal either a broken rod or a complete rod. Infants who

perceived the rod as moving behind the occluder as a coherent object, indicated by a

recovery of looking after habituation, were identified as perceivers. Participants who
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perceived a broken rod did not recover their looking after habituation and were con-

sidered non-perceivers. The authors then examined eye tracking data for perceivers

and non-perceivers using the eye tracking variables described above.

Perhaps the most frequently used eye tracking variable is fixation location. Re-

searchers have relied on this variable across a variety of tasks, including object comple-

tion [3, 63], understanding other people’s actions [37], and a variety of categorization

and category learning tasks [10, 76, 93]. For example, Quinn et al. (2009) exam-

ined categorization of cats and dogs in 6- to 7-month-olds. They found that when

items were presented in the canonical upright position, categorization accuracy was

associated with a high proportion of looking to the head; whereas, when items were

presented in an inverted position, categorization was associated with the large pro-

portion of looking to the body. Best et al (2010) presented 16- to 24-month-olds

with a category learning task. Categories included artificial items that had shapes

in four locations, with two of the shapes being category relevant (i.e., present in all

members of the category, but not in non-members) and two being irrelevant (i.e.,

exhibiting both within- and between-category variability). The researchers examined

the proportion of fixations to category-relevant features and its change in the course

of familiarization. A summary of the reviewed studies is presented in Table 4.1.

Source Task Eye Tracking Variable
Johnson, et al., PNAS, 2003 Object completion Saccade latency
Amso and Johnson, Developmental Psychology, 2006 Object completion Proportion fixation to AOI
Johnson, et al, Infancy, 2004 Object completion Fixation and saccade frequency, dwell time
Johnson, et al, Developmental Psychology, 2008 Object completion Proportion fixation to AOI
Falck-Ytter, et al, Nature Neuroscience 2006 Goal perception Proportion fixation to AOI, AOI fixation time
Amso and Johnson, Cognition, 2005 Visual Search Saccade latency
Amso and Johnson, Infancy, 2008 Visual Search Saccade latency
Quinn et al, Child Development, 2009 Categorization Proportion fixation to AOI
McMurray and Aslin, Infancy, 2004 Category Learning Proportion fixation to AOI
Best, Robinson, and Sloutsky, Proc. of CSS, 2010 Category learning Proportion fixation to AOI

Table 4.1: Comparison of previous eye tracking variables.
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Two conclusions can be drawn from this review. First, multiple eye tracking

variables have been used across studies to examine infants’ learning. And second,

although all these variables make intuitive sense, no formal selection process of these

variables has been defined. This poses several concerns and questions. Namely, since

different variables are used in different studies, do these variables correlate and thus

provide redundant information? If not, why should any one variable be used instead

of another? Should the variables be selected based on the specific categorization task,

or should a fixed subset of eye tracking variables be used across all studies? Can we

define a principled way of determining which variables to analyze in a given category

learning experiment? This chapter defines a methodology to address these questions

and concerns.

Our approach works as follows. We extracted a large set of possible variables

from the adult and infant gaze sequence during a categorization task (e.g. fixations,

saccades, gaze sequences, etc). Some of the variables have been used in analyzing

categorization experiments, whereas others were new. Our goal is to use the power

of statistics and machine learning to identify eye tracking variables that best predict

category learning in adults and subsequently in infants.

The significant contribution of this work is that it provides a systematic method-

ology for identifying eye tracking variables that are linked to category learning, thus

allowing researchers to better understand category learning from eye tracking data.

Furthermore, our results retrospectively validate the use of several variables in the

eye tracking studies mentioned above.
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4.1 Methods

4.1.1 Participants

This project was approved by a Behavioral and Social Sciences IRB at The Ohio

State University. Adults were given sufficient information and signed a consent form

before freely participating in the study. At least one parent of each infant participant

provided written consent before the study.

Three category learning experiments were conducted, two focused on adults and

one on infants. Twenty-four adults participated in Experiment 1. Forty-six adults

who did not participate in Experiment 1 participated in Experiment 2. All adult par-

ticipants had normal or corrected to normal vision and were undergraduate students

at The Ohio State University participating for course credit. In Experiment 3, fifteen

6- to 8-month-old infants participated in the experiment. All parents reported their

infants to be developing typically and without known health problems.

4.1.2 Materials

Category members were flower-like objects with six petals. An example object is

shown in Fig. 4.1, with the petals enumerated for clarity. Those numbers were not

shown during the experiment. There were four different categories, each defined by a

single petal having a distinguishing color and shape. Specifically, the category defining

features were category A: a pink triangle at position 4; category B: a blue semi-circle

at position 4; category C: an orange square at position 6; and category D: a yellow

pentagon at position 6. Each object was uniquely associated with one category. That

is, no one object exhibited the defining features for two or more categories. Stimuli

were displayed on the computer subtending approximately 11 × 11 degrees of visual
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Figure 4.1: An example category object with the Areas of interest (AOI)s enumerated.
Numbers were not displayed to the participants. The category defining features were
category A: a pink triangle at position 4; category B: a blue semi-circle at position
4; category C: an orange square at position 6; and category D: a yellow pentagon at
position 6.

angle.The eccentricity of the stimuli subtended an approximate horizontal visual angle

of 14.4◦ and an approximate vertical visual angle of 11.5◦.

During all three experiments, the participants’ eye gaze was recorded using a Tobii

T60 eye-tracker (Falls Church, VA) at the sampling rate of 60Hz while participants

sat approximately 60 cm away from the display screen.

4.1.3 Experiment 1 - Adult supervised learning

To validate the efficacy of the approach before applying it to infants, adult par-

ticipants were tested. Prior to learning in Experiment 1, adults were instructed that

there was a single feature defining a category. This hint introduces supervision and

previous research indicates that supervision has consequences with respect to how

quickly participants learn to classify the objects, especially when there are few over-

lapping features [66].

The experiment had 8 blocks. In each block there were 8 learning trials followed

by 4 testing trials. In a learning trial, a category member was displayed in the center
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Figure 4.2: Illustration of category pair image with AOIs labeled. Numbers were not
shown to participants. The relevant AOIs 4 and 6 on the left object correspond to
AOIs 11 and 13 on the right.

of the screen one at a time for 1.5 seconds each. In a testing trial, a novel category

member of the to-be-learned category and a novel member of a contrasting category

were presented side by side, each centered approximately 7.7◦ horizontal visual angles

from the center of the screen. An example with labeled AOIs is shown in Fig. 4.2. Test

stimuli were displayed on the screen until the participant made a decision via key press

about which stimulus was a member of the learned category. The left/right position of

the test stimuli was counter-balanced. A randomly located fixation point (cross-hair)

directed the participants gaze to a position on the monitor in-between trials. The to-

be-learned category remained the same for the first 4 blocks. A second to-be-learned

category was introduced in the final 4 blocks without notice to the participant. If the

experiment started with a category defined by the petal at position 4 (category A or

B), the second category was defined by the petal at position 6 (category C or D), and

vice-versa. Using categories with definitive features at different positions provided a

mechanism to verify the reproducibility of the variables determined most important.
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4.1.4 Experiment 2 - Adult unsupervised learning

The procedure in Experiment 2 (unsupervised condition) was identical to that

in Experiment 1 except that participants did not receive supervision (i.e., no hint

provided) about the category structure.

4.1.5 Experiment 3 - Infant supervised learning

The infant experiment was conceptually similar to Experiment 1, but was method-

ologically adapted for infants by using a familiarization paradigm. In a familiarization

paradigm, the infant is repeatedly exposed to examples of a particular category before

a discrimination task where the preference for a familiarized category member and a

novel category member are measured.

To aid infant learning, identical pairs of category exemplars were shown on each

trial. This was also done so that the presentation of stimuli in the learning and testing

phases had an identical layout. Furthermore, there was only a supervised condition,

in which the infants were presented with a pre-trial fixation video of synchronized

sound and motion (e.g., looming flower petal with corresponding whistle sound) to

draw their attention to the single category-relevant feature. It should be noted that no

unsupervised condition was conducted with infants, because previous developmental

research suggests supervision is necessary for young children to learn categories with

a sparse category structure [66].

Once the infant looked at the fixation video, the learning trial commenced. Infants

had to accumulate 3 seconds of looking to the category exemplar pairs. Whenever

an infant looked away, an attention-grabbing fixation was presented until the infant

reconnected with the images on the screen. After accumulating 3 seconds of looking
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to the stimulus pair, the supervisory fixation video was again presented followed by

another learning image pair. This procedure was repeated for 8 blocks with 8 learning

pairs per block.

In the testing phase, a novel category member was paired with a novel non-

category member as in the adult experiments. The standard assumption is that an

infant can discriminate between the category and non-category objects if he or she

displays a novelty or familiarity preference. There were two test trials per block, in

which a novel exemplar from the learned category was paired with a novel exemplar

from a novel category. Test trials were presented for a fixed duration of 6 seconds,

and left/right position of familiar or novel category objects was counterbalanced.

4.1.6 Collecting and filtering eye tracking data

Eye movements were monitored during object viewing with the Tobii T60 eye

tracker. The system tracks eye movements by illuminating the eye with infrared light

and capturing corneal reflection at a frequency of 60 Hz (i.e., every 16.6 ms). As the

eye moves, the angle between the pupil and the corneal reflection increases, allowing

the x-y coordinates of the gaze position to be measured over time.

Unfortunately, the gaze data contain noise, missing data, and micro-saccades,

which makes identifying true fixations and saccades difficult. Therefore, we pro-

cessed these data using MATLAB-based software created in our laboratory by the

first author. The raw eye tracking data from every experimental block were filtered

using a Kalman filter [82] before extracting the variables of interest. The eye gaze

data from both the left and right eye were filtered separately. The average of the
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filtered data from left and right eyes yielded the mean eye gaze data, which were used

in the current analyses.

4.1.7 Labeling the Data

The eye movement sequences during the learning phase of the experiment aid in

understanding category learning, while the sequences during the testing phase aid

our understanding of category use. Before applying our methodology to understand

these processes, however, the eye tracking data from both the learning and testing

phases of the experiments were labeled as learner (class 1), non-learner (class 0), or

indeterminate (class 2). Indeterminate samples were not analyzed.

Adult Labels: Intuitively, labels for adult data are readily identified based on the

accuracy of the responses during the testing phase. An uninterrupted string of cor-

rect responses during the testing phase suggests that the participant has learned the

category. Each adult experimental block yielded 12 eye movement sequences. These

correspond to eye movements during the presentation of 8 exemplar images during

the learning phase and 4 test images during the testing phase. Adult participants

had 4 blocks of learning and discriminating the same category before switching to a

new category. This amounted to 32 samples of the learning phase, and 16 samples of

the testing phase for each category per participant. The 16 samples from the testing

phase were associated with a 16 digit binary string, called the response string. This

data structure shows performance over the first and last 4 blocks of the experiment.

A one identifies a correct response, while a zero denotes an incorrect response on the

associated test trial. An example is shown in Fig. 4.3. We labeled each 16 digit

response string separately as follows.
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Figure 4.3: Illustration of a time series for one subject. Ones encode correct cate-
gory discrimination, while zeros encode incorrect responses. The first row shows the
accuracy over the first four blocks (presentation of first category), while the second
row shows accuracy over the last four blocks (presentation of second category). The
class labels (learner or non-learner) are determined separately for each row, because
the category condition is different for each row.

We expect a learner’s response string to contain a series of ones beginning within

the string and terminating at the end of the response string. This pattern indicates

that at some point the participant learned the category and correctly discriminated

the category from that point on. A participant who has not learned the category

(non-learner) would select one of the two stimuli by chance in each trial. A non-

learner could get lucky and achieve a series of correct guesses. In order to determine

if a participant is a learner or a non-learner we need to establish a criterion that

allows us to reject chance as the cause for a series of ones. The question that we

need to answer is how many ones we should expect for a learner. We address this

problem by assessing how likely it is that we see a sequence of M consecutive ones in

a binary response string of length R = 16. Under the null hypothesis, the participant

does not know the category label and selects one of the stimuli by chance, giving her

a 50% chance of correctly guessing the category member. Each sequence is equally

likely given this assumption, so the probability of guessing at least M right in a row

is the total number of sequences having M ones in a row ( (R −M + 1) × 2(R−M) )

69



divided by the total number of binary sequences of length R ( 2R). This yields the

probability p = (R −M + 1)/(2M). For R = 16, M = 10 is the minimum number

that achieves a significance level of p < 0.01 (p = 0.0068 ). Therefore, we rejected

the null hypothesis that a participant was guessing randomly when we identified a

consecutive string of 10 correct responses.

We call the position of the first correct response in this string of correct responses

the point of learning (POL). The test phase and learning phase samples before the

POL were labeled as non-learner, while the samples after the POL were labeled as

learner. The learning phase samples from the block associated with the POL were

labeled as indeterminate, because it was unclear at exactly which trial during the

block the category was learned.

If the learning criterion was not achieved, we then identified the remaining non-

learning and indeterminate samples. We first labeled correct responses at the end

of the respond string as indeterminate. Those samples did not meet the learning

criterion, but might be attributed to learning late in the experiment. The remaining

samples were labeled as non-learner. Approximately 8% of the adult eye track samples

were labeled indeterminate.

Infant Labels: Obviously, infants are not able to respond by keyboard to identify

a category object. Instead, we used a variant of the preferential looking paradigm

to determine if an infant could discriminate between novel exemplars of a familiar

category object and a novel category object. Recall that the preferential looking

paradigm assumes that infants who consistently look more to one class of stimuli

when shown two classes of stimuli are able to discriminate between the two classes.

This means that if the infant consistently looks longer at the learned category object
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(or novel category object), then he or she is assumed to be discriminating between

the familiar and novel categories.

Given this paradigm, we labeled each infant’s gaze data by blocks. Each block

consisted of two test phase samples. We determined novelty preference as the ratio

of total looking time to the novel category object compared to the total looking time

to the novel category plus the familiar category object. We sorted the mean of the

novelty preference for each block according to the absolute difference from 0.5. A third

of the blocks with mean novelty preference closest to 0.5 were labeled as non-learner.

The third of the blocks with novelty preference furthest from 0.5 in absolute value

were labeled learner. The samples in the middle third were labeled as indeterminate.

4.1.8 Variable List

We compiled an over-complete list of eye tracking variables. We began with the

fundamental variables, fixations and saccades. Fixations occur when eye gaze is

maintained at a single position for at least 100ms. They were identified using the

dispersion threshold algorithm of [99]. Saccades are rapid eye movements that move

the eye gaze between points of fixation. To be considered a saccade, the eye movement

needed to exceed smooth pursuit velocity of 30◦ per second or 0.5◦ per sample at

60Hz [114]. The fixations and saccades were determined with respect to a specific

AOI within an object. AOIs are regions of an object image or scene that can be

grouped in some meaningful way, such as color uniformity or the structural nature of

the object. The AOIs can further be described as relevant or non-relevant, based on

their role in determining object category membership.
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These fundamental eye tracking variables were combined in various ways to derive

a larger set of variables. Our variable list is defined as follows:

1. AOI fixation percentage describes the percentage of time fixated at the different

AOIs during a trial. All non-AOI fixations were discarded in this and all of the

variables defined. For an image with q AOIs, this variable was encoded as a q-

dimensional feature vector with a value for each AOI. The fixation percentages

were normalized so that they sum to 1, unless there were no fixations at AOIs.

In that case, all percentages were set to 0.

2. Relevant AOI fixation density is a scalar value between zero and one which

describes the percentage of the total time fixated which is at the relevant AOI(s).

3. AOI fixation sequence describes the sequence of AOI fixations during one trial.

We limited this sequence to seven fixations, starting with trial onset (not count-

ing fixations to the fixation mark). We encoded a fixation sequence of f fixations

over q AOIs as a q × f binary matrix, where each column of the matrix had a

1 in the position corresponding to the AOI which was fixated, and zero other-

wise. If there were fewer than f fixations, the last columns were set to 0. This

binary encoding of the fixation sequence allowed us to describe any sequence of

fixations without imposing an ordering of the AOIs. In addition, the fixation

sequence was represented as a sequence of relevant and non-relevant AOI fixa-

tions. This representation yielded a 2× f binary matrix, in which each column

had a 1 in the first row if a relevant AOI was fixated or a 1 in the second row

if a non-relevant AOI was fixated. If there were less than f fixations, the last

columns were set to 0. The analysis showed that the latter representation was
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more informative in some cases. Note that it was necessary to use a pair of

binary variables to encode each fixation of the latter representation to account

for three cases: fixation at a relevant AOI or non-relevant AOI, and fewer than

f fixations. The number of fixations to consider as well as the start position

were determined using cross validation (CV). In cross validation, the training

data are separated into k partitions, and for each partition, samples are classi-

fied using a classifier that is trained with the remaining k − 1 partitions. The

percentage of correctly classified samples over all partitions is the CV accuracy.

We varied the parameters (start fixation and number of fixations) and calcu-

lated the CV accuracy when using only the fixation sequence to classify samples.

Using the first few fixations gave the best results, with no improvement as later

fixations were included.

4. Duration of fixations in sequence describes the duration of each fixation in

the sequence described by variable 3. This variable was encoded by an f -

dimensional vector.

5. Total distance traveled by eye is a scalar describing the total distance traveled

by the eye gaze during a trial.

6. Histogram of fixation distances to relevant AOI describes how much time is

spent fixated near or far from the relevant AOI(s). A histogram with h bins

and an image with r relevant AOIs yielded an h× r dimensional matrix. Each

column corresponds to a different relevant AOI, and each row corresponds to a

particular range of distances from that AOI. The entries define the percentage

of time fixated at the distance ranges, so each column sums to 1. If no fixations
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occured, all values were set to 0. The number of bins was determined using CV.

The bins corresponding to AOI 4 are illustrated in Fig. 4.4.

7. Number of unique AOIs visited is a scalar describing the total number of unique

AOIs fixated during a trial. AOI revisits were not counted as new.

8. Saccade sequence is similar to variable 3 but describes the sequence of AOI

saccades during one trial. All saccades whose targets were not to AOIs were

discarded in this and all of the variables defined. The sequence was limited

to seven saccades, starting at the first saccade. The number of saccades to

consider as well as the start saccade were determined using CV. We encoded

a saccade sequence of s saccades over q AOIs as a q × s binary matrix. Each

column of the matrix had a 1 in the position corresponding to the AOI which

was the target of the saccade, and zero otherwise. If there were fewer than s

saccades, the last column(s) were set to 0. In addition, the saccade sequence

was represented as a sequence of saccades to relevant and non-relevant AOIs.

This representation yielded a 2× s binary matrix, with each column containing

a 1 in the first row if saccading to a relevant AOI or a 1 in the second row if

saccading to a non-relevant AOI. If there were fewer than s saccades, the last

column(s) were set to 0.

9. Relative number of saccades to an AOI is the saccade analogue of variable

1 and describes the relative number of saccades to the AOIs during one eye

movement. An image with q AOIs yielded a q-dimensional feature vector with

each entry counting the number of saccade targets at the corresponding AOI.
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Figure 4.4: Illustration of variable 6, the distance histogram bin (DHB). AOI 4 DHB
regions have been numbered for clarity. DHB 1 to 35 describe the percent of time
fixating within the corresponding bins. For example, DHB 1 = 0.5 means half the
total fixation time was within the first bin. Bin sizes were determined using cross
validation.

The vector was normalized by the sum of all entries such that the entries added

to 1 unless there were no saccades. In that case, all entries were set to 0.

10. Fixation latency to relevant AOI describes the delay before fixating at a relevant

AOI. It was defined as the duration from the trial start to the beginning of the

first fixation at a relevant AOI.

11. Saccade latency to relevant AOI describes the delay in seconds before a saccade

to a relevant AOI. It was defined as the duration from the trial start to the end

of the first saccade to a relevant AOI.

Thus, eye movements were represented by a feature vector x = (x1, x2, . . . , xd)
T

whose d entries correspond to the variables described. Each feature xi was normalized

to zero mean and unit variance over the entire dataset. In addition, each x was

associated with a class label, y ∈ {0, 1}. For clarity, features denote the entries of the

feature vector which encodes the eye tracking variables, while variables correspond
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to the measures of the eye tracking enumerated above. Therefore, d is much larger

than 11, because encoding certain variables requires multiple feature values. Note

that d was the same for all feature vectors corresponding to images having the same

number of AOIs and relevant AOIs because a fixed number of fixations and saccades

were analyzed.

In the case of a single category object having one relevant AOI, variable 2 is

identical to one of the values of variable 1. Therefore, after extracting all variables

from the gaze data of all participants, we did a simple redundancy check to eliminate

cases of identical valued features. For features xi, xj to be identical, they must mirror

each other over all feature vectors for a particular category condition and within

either the learning or testing phase. In addition, the information encoded by several

of these features overlaps. This over-complete representation allows us to find the

encoding that is best suited to describe the categorization task. To this end, we

performed variable selection on this over-complete set.

4.1.9 Variable Selection

Our goal was to identify the subset of variables from the set defined above that can

best separate learners from non-learners. This was achieved using ANOVA feature

selection by ranking, Naive Bayes Ranking (NBR), and L1 logistic regression (L1-LR).

ANOVA feature selection relies on a standard hypothesis test on each feature of x.

Specifically, let xi denote the ith feature of x. Using a dataset of eye tracking feature

vectors and the associated class labels, we performed a two tailed t-test of the null
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hypothesis, which states that samples of xi coming from classes 1 and 0 are inde-

pendent random samples from normal distributions with equal means, µi1 and µi0,

respectively. The alternative says that the class means are different. We calculated

the test statistics and the corresponding p-value. A low p-value means the null hy-

pothesis is rejected with confidence. Since the goal was to find the variables which

best separate the classes, the feature with lowest p-value was ranked as best. The

p-values were calculated for all features xi, i = 1 . . . d, and they were ranked from best

to worst according to increasing p-values.

Naive Bayes Ranking (NBR) assumes that if the labeled feature vectors can be accu-

rately classified given a single feature, xi, then that feature separates the two classes

well. In essence, the classification accuracy is a surrogate for the class separability

achieved by the particular feature. Therefore, the features are ranked from best to

worst according to decreasing classification accuracy.

The Bayes classifier assigns a sample, x, to the class having the highest posterior

distribution. More formally, assume that the class-conditional density functions of a

feature, given its class, p(xi|y), are modeled as normally distributed with mean and

variance, µiy and σiy, respectively. Then by applying the Bayes formula, the posterior

probability of class y is P (y|xi) = p(xi|y)P (y)
p(xi)

, where P (y) is the prior of class y, and

p(xi) is a scale factor which ensures that the probabilities sum to 1. In this work, we

have P (y = 1) = P (y = 0) = 0.5, corresponding to the assumption that a priori a

sample is equally likely to come from a learner as from a non-learner. The scale factor

is the same for both classes, so it can be omitted in the classification rule. Finally,
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the predicted class label, ŷ is given by:

ŷ = arg max
j∈{0,1}

p(xi|y = j)P (y = j). (4.1)

L1 Logistic Regression (L1-LR) is a linear classifier model, which returns a probability

that a sample belongs to a particular class. It accomplishes this by modeling the

natural logarithm of the ratio, or odds, of two probabilities as a linear function of x.

More formally,

ln

(
p(y = 1|x)

1− p(y = 1|x)

)
= wTx− b, (4.2)

where ln denotes the natural logarithm. The two class probabilities are then given

by

p(y = 1|x) =
1

1 + exp(−wTx + b)
,

p(y = 0|x) =
exp(−wTx + b)

1 + exp(−wTx + b)
.

The parameters, w and b, are estimated via Maximum Likelihood (ML) estimation.

A regularization term λ is introduced to penalize large elements in w. Using an L1-

norm regularizer yields a sparse model. More formally, the regularized ML objective

is,

ŵ = arg max
w,b

N∑
i=1

logP (yi|xi)− λ‖w‖1, (4.3)

where (xi, yi), i = 1, . . . , N are the full feature vectors and their associated labels, λ

is a user determined real valued positive regularization parameter, and ‖ · ‖1 denotes

the L1-norm. Increasing the value of λ will result in more elements of w being shrunk

to zero, i.e., a sparse weight vector w. Variable selection is performed by increasing
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the value of λ until a desired number of w elements are non-zero. The elements of

x corresponding to the non-zero elements of w are the top ranked variables. These

top ranked variables can then be sorted from best to worst by sorting the corre-

sponding entries of w in order of descending absolute magnitude. We use the L1-LR

implementation of [102].

Each method results in a ranking of the features, xi, from best to worst. If we

vectorize the indices of the t top ranked features as k = (k1, k2, . . . , kt)
T , then after

feature selection x = (xk1 , xk2 . . . , xkt)
T .

4.1.10 Linear Classification

Once the important variables were identified, we used them to classify the gaze

data as having originated from a learner or non-learner. This required that we train

a classifier to distinguish between two classes of data. Recall that each eye movement

resulted in a feature vector, or sample x. A classifier defines a decision rule for

predicting whether a sample is from class 0 or 1. A linear classifier was used because of

its ease of interpretation [75] – the absolute model weights give the relative importance

of the eye tracking variables. We illustrate in Fig. 4.5 with a 2-dimensional linear

classifier model specified by w and b. w is the normal vector of the hyperplane which

separates the feature space into two decision regions, and b is the distance from the

origin to the hyperplane (i.e., the offset).

All samples x above the hyperplane are assigned to class 1 while the samples

below are assigned to class 0. Data samples x existing on the boundary satisfy

wTx − b = 0. Therefore, samples are classified according to the sign of wTx − b.

In this example w = (−.55, .83)T , so the second dimension, x2, is more informative
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Figure 4.5: Illustration of a linear classifier. w is the normal vector of the hyperplane
which separates the feature space into two decision regions, and b is the distance from
the origin to the hyperplane. The blue circles represent samples from class 1, while
the green squares represent samples from class 0. All but one of the blue circles exists
on the positive side of hyperplane, and are classified correctly.

for classification. Note that in our case the feature space has not two but up to 334

dimensions, depending on the cut-off for variable selection.

Several varieties of linear classifiers exist. In this work, we used the Bayes classifier

with equal covariances, L1-LR, and the Support Vector Machine (SVM) algorithm.

Bayes with equal covariances (Bayes): When both classes are assumed to be multivari-

ate normally distributed with the same covariance Σ, means µ1 and µ0, and equal pri-

ors, the Bayes classifier decision boundary is a hyperplane given by w = Σ−1(µ1−µ0)

and b = 1
2
wT (µ1 − µ0) [29].

L1 Logistic regression: Recall that L1-LR yields a probability that a sample belongs

to a particular class. It uses the model of Equation (4.2), where w defines the normal

of the hyperplane, and the sign of wTx− b determines the class label.
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Support Vector Machine: SVM is a linear classifier which maximizes the margin

between two classes of data [16]. In the case that the training samples are perfectly

separable by a hyperplane, we can find w and b such that the data satisfies the

following constraints,

xTi w − b ≥ 1 for yi = 1, (4.4)

xTi w − b ≤ −1 for yi = 0. (4.5)

Essentially, these constraints specify that the samples from the different classes reside

on opposite sides of the decision boundary. The margin between the classes, defined

by 2
‖w‖2 where ‖ · ‖2 defines the L2-norm, is then maximized subject to the above

constraints. The dual formulation of the constrained optimization problem results in

a quadratic program for w and b. In the case that samples from each class are not

linearly separable, a penalty is introduced to penalize the amount that a sample is on

the wrong side of the hyperplane. Again, the dual formulation results in a quadratic

program for w and b. We used the implementation of [19].

4.1.11 Classification Accuracy

The classification accuracy used for adults was the leave-one-subject-out cross-

validation (LOSO-CV) accuracy. In LOSO-CV, the samples belonging to one par-

ticipant are sequestered, and the remaining samples are used to train the classifier.

The sequestered samples are then classified with the learned classifier, and the proce-

dure is repeated for every participant in the database. The total number of correctly

classified samples divided by the total number of samples is the LOSO-CV accuracy.

The classification accuracy used for infants was the leave-one-experiment-block-

out cross-validation (LOBO-CV) accuracy. This alternative accuracy measure makes
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more effective use of the eye movement data when the sample size is very small. In

LOBO-CV, the samples belonging to one experiment block are sequestered, and the

remaining samples are used to train the classifier. The sequestered samples are then

classified with the learned classifier, and the procedure is repeated for every block in

the database. The total number of correctly classified samples over the total number

of samples is the LOBO-CV accuracy.

4.2 Results

4.2.1 Adult Experiment

We first labeled the adult trials as category learner or non-learner. This resulted

in 728 learning class samples and 1, 256 non-learning class samples for the learning

phase, and 473 learning class samples and 601 non-learning class samples for the

testing phase in the category A or B category learning condition. There were 496

learning class samples and 1, 568 non-learning class samples for the learning phase,

and 323 learning class samples and 717 non-learning class samples for the testing phase

in the category C or D category learning condition. The indeterminate samples were

not analyzed. We then extracted the eye tracking variables from each trial’s gaze

sequence. Each labeled data sample resulted in a 182-dimensional feature vector for

the learning phase samples, and a 334-dimensional feature vector for the testing phase

samples.

We applied the variable selection algorithms to identify the most important vari-

ables for separating learners from non-learners, and validated those variables using the

three linear classifiers. The LOSO-CV error is reported as a function of the number

of top features used for classification in Fig. 4.6. Recall that the features encode the
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Figure 4.6: Leave one subject out cross-validation accuracy for adult subjects as a
function of the number of top ranked variables used for classification. The first two
rows show results for the learning phase of the experiments (categories AB and CD,
respectively). The last two rows show the results for the testing phase of the experi-
ments (categories AB and CD, respectively). ANOVA, NBR, and L1-LR correspond
to ANOVA feature selection, Naive Bayes feature selection, and L1 penalized logistic
regression feature selection, respectively. AB and CD correspond to category object
A or B and C or D respectively. In almost all cases, the classification accuracy was
near the maximum after including very few features and did not change much when
including more. Chance level is plotted as the accuracy resulting from classifying
each sample as the most common class.
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eye tracking variables. The results show that a very small numbers of features yield

a high classification rate, and including more features does not improve the accuracy.

Using the top five ANOVA features and the Bayes classifier, we achieved LOSO-

CV accuracies of 77% and 82% in the AB and CD learning conditions, respectively.

Similarly, we achieved 78% and 76% accuracy in the testing conditions.

The stable performance beyond just a few features suggests that a small number

of variables is sufficient for discriminating learners and non-learners. The top five

variables for ANOVA, NBR, and L1-LR are listed in Table 4.2. We boldfaced the

variables that were consistently ranked in the top five variables across both the cat-

egory A or B and category C or D conditions and all feature selection algorithms.

We underlined variables that were consistently ranked in the top five variables by at

least two of the three features selection algorithms and across category A or B and

category C or D conditions. Note that AOI 4 for the category A or B condition is

equivalent to AOI 6 in the category C or D condition. The consistent top variables

in the learning condition were latency to a fixation at the relevant AOI, density of

fixations at the relevant AOI, and first and second fixation at the relevant AOI. The

top variables in the testing condition were first, second, and third fixations as well as

second saccade.

4.2.2 Infant Experiment

We first labeled the infant trials as category learner or non-learner. This amounted

to 135 learning class samples and 137 non-learning class samples for the learning

phase, and 40 learning class samples and 40 non-learning class samples for the testing

phase in the category A or B category learning condition. The C or D category
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A
o
r

B

Learning condition
ANOVA NBR L1-LR

1. Lat to fix rel AOI Lat to fix rel AOI Lat to fix rel AOI
2. Den of fix at rel AOI Den of fix at rel AOI Den of fix at rel AOI
3. rel AOI, DHB 2 rel AOI, DHB 2 4th fix at rel AOI
4. 2nd fix at rel AOI 2nd fix at rel AOI 3rd fix at rel AOI
5. 1st fix at rel AOI 1st fix at rel AOI 5th fix at rel AOI

C
o
r

D

1. Lat to fix rel AOI Den of fix at rel AOI Den of fix at rel AOI
2. Den of fix at rel AOI Lat to fix rel AOI Lat to fix rel AOI
3. rel AOI, DHB 5 rel AOI, DHB 2 rel AOI, DHB 2
4. 1st fix at rel AOI 1st fix at rel AOI Den of fix at AOI 1
5. 1st fix at non-rel AOI 2nd fix at rel AOI Den of fix at AOI 2

A
o
r

B

Testing condition
ANOVA NBR L1-LR

1. 3rd fix at non-rel AOI 2nd fix at non-rel AOI 2nd fix at non-rel AOI
2. 2nd fix at non-rel AOI 2nd sac to non-rel AOI 1st fix at non-rel AOI
3. 2nd sac to non-rel AOI 1st fix at non-rel AOI 3rd fix at non-rel AOI
4. Lat to fix rel AOI Duration of 3rd fix 2nd sac to non-rel AOI
5. Lat to sac rel AOI 3rd fix at non-rel AOI 1st sac to non-rel AOI

C
o
r

D

1. 4th fix at non-rel AOI Den of fix at rel AOI 2nd sac to non-rel AOI
2. 3rd fix at non-rel AOI 1st fix at non-rel AOI 1st fix at non-rel AOI
3. Lat to fix rel AOI Den of fix at AOI 13 Den of fix at rel AOI
4. 2nd sac to non-rel AOI 1st fix at rel AOI 2nd fix at non-rel AOI
5. Number AOIs fixated 2nd fix at non-rel AOI 3rd fix at non-rel AOI

Table 4.2: Adult Experiment: The variables above were determined most relevant
during the category learning and category discrimination phases of the adult exper-
iment. The bold face entries show variables that were consistently determined most
relevant using all feature selection algorithms and on two separate category object
conditions. The underlined entries show variables that were determined most rele-
vant by at least two feature selection algorithms and across both category conditions.
ANOVA, NBR, and L1-LR correspond to the different feature selection algorithms.
AOI 4 is relevant in the category A or B condition, and corresponds to AOI 6 in
the category C or D condition. We use the following shorthand convention: fixation
(fix), saccade (sac), relevant (rel), density (den), latency (lat), distance histogram bin
(DHB).
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learning condition resulted in 139 learning class samples and 127 non-learning class

samples for the learning phase, and 40 learning class samples and 40 non-learning

class samples for the testing phase. As in the adult experiment, the indeterminate

samples were not used. After labeling the data and extracting the variables from each

gaze sequence, each sample resulted in a 334-dimensional feature vector for both the

learning and testing phase samples.

The three linear classifiers discussed above were applied to determine the LOBO-

CV error as a function of the number of top features selected by the three different

feature selection algorithms. The results are shown in Fig. 4.7, where we see that

classifying infants requires significantly more variables than the adult case. This is to

be expected because of the diffuse looking pattern typical of babies. Using the top ten

ANOVA variables and the Bayes classifier, we achieved LOBO-CV accuracies of 61%

and 64% in the AB and CD learning conditions, respectively. Similarly, we achieved

66% accuracy in the testing conditions. The top ten infant variables are shown

in Table 4.3. The bold face entries were consistently selected by all three feature

selection algorithms across both category conditions. The consistent top variables in

the learning and testing conditions were density of fixations and DHB, which describes

the density of fixations at different distances from the relevant AOI(s). The fourth

and sixth fixations were also relevant in the testing condition.

4.2.3 Comparing Infants to Adults

The above results raise a new question. How similar are the attention models of

adults and infants? Specifically, since the infant data are so noisy, can we use the

adult model to improve on the infant one? To test this, we used the adult Bayes
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Figure 4.7: Leave one experimental block out cross-validation accuracy for infant
subjects as a function of the number of top ranked variables used for classification.
We use the same conventions of Fig. 4.6.
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A
o
r

B
Learning condition
ANOVA NBR L1-LR

1. Den of fix at AOI 10 Den of fix at AOI 2 Den of fix at AOI 10
2. 3rd fix at AOI 10 Den of fix at AOI 10 1st sac to AOI 5
3. AOI 11, DHB 5 AOI 11, DHB 5 Den of fix at AOI 1
4. Den of sac to AOI 10 AOI 11, DHB 35 2nd fix at AOI 1
5. AOI 4, DHB 20 AOI 11, DHB 22 Den of fix at AOI 2
6. 2nd fix at AOI 10 Den of sac to AOI 2 AOI 11, DHB 5
7. 2nd fix at AOI 1 Den of fix at AOI 1 AOI 11, DHB 22
8. Den of fix at AOI 1 Den of fix at AOI 9 AOI 11, DHB 16
9. Den of fix at AOI 2 AOI 4, DHB 7 2nd sac to AOI 3
10. AOI 11, DHB 22 AOI 4, DHB 12 Den of fix at AOI 3

C
o
r

D

1. AOI 13, DHB 5 4th fix at AOI 2 AOI 13, DHB 5
2. AOI 6, DHB 21 3rd sac to AOI 2 AOI 6, DHB 21
3. Den of fix at AOI 13 1st fix at AOI 5 3rd sac to AOI 10
4. AOI 13, DHB 2 3rd sac to non-rel AOI Den of fix at AOI 13
5. 3rd sac to non-rel AOI 3rd fix at AOI 6 4th fix at AOI 10
6. 1st fix at AOI 14 3rd fix at AOI 9 3rd sac to non-rel AOI
7. 1st fix at non-rel AOI AOI 6, DHB 21 4th fix at AOI 5
8. Den of fix at AOI 14 AOI 13, DHB 5 1st fix at AOI 14
9. AOI 6, DHB 8 1st fix at non-rel AOI 4th sac to AOI 1
10. 4th fix at AOI 5 4th fix at AOI 4 AOI 13, DHB 2

A
o
r

B

Testing condition
ANOVA NBR L1-LR

1. 6th fix at non-rel AOI 6th fix at non-rel AOI 6th fix at non-rel AOI
2. AOI 4, DHB 20 AOI 4, DHB 20 AOI 4, DHB 8
3. AOI 4, DHB 8 Den of fix at AOI 10 Den of fix at AOI 13
4. 4th fix at AOI 7 Den of sac to AOI 10 4th fix at AOI 7
5. Den of sac to AOI 10 4th fix at AOI 7 AOI 4, DHB 20
6. AOI 4, DHB 10 AOI 4, DHB 8 AOI 11, DHB 16
7. Den of fix at AOI 10 AOI 4, DHB 10 7th fix at AOI 7
8. 7th fix at AOI 10 number AOIs fixated AOI 4, DHB 10
9. 1st sac to AOI 10 1st fix at AOI 13 Den of sac to AOI 10
10. 1st fix at AOI 1 2nd fix at AOI 14 Den of fix at AOI 1

C
o
r

D

1. Den of fix at AOI 7 Den of fix at AOI 7 3rd sac to AOI 3
2. 3rd sac to AOI 3 3rd fix at AOI 7 Den of fix at AOI 7
3. 1st fix at AOI 7 6th fix at AOI 7 4th fix at AOI 10
4. 4th fix at AOI 10 Duration of 2nd fix 4th fix at AOI 12
5. 3rd fix at AOI 7 AOI 13, DHB 2 2nd fix at AOI 1
6. 6th fix at AOI 7 3rd sac to AOI 3 2nd sac to AOI 8
7. 2nd fix at AOI 1 1st fix at AOI 7 2nd fix at AOI 2
8. 2nd fix at AOI 2 4th fix at AOI 7 6th fix at AOI 8
9. 1st sac to AOI 10 4th fix at AOI 10 2nd sac to AOI 1
10. AOI 13, DHB 12 AOI 6, DHB 7 Den of fix at AOI 1

Table 4.3: Infant Experiment: The variables above were determined most relevant
during the category learning and category discrimination phases of the infant experi-
ment. The bold face variables were consistently selected. We use the same conventions
as Table 4.2. DHB variables correspond to density of fixating at different distances
from the AOI. Larger DHBs correspond to bins that are further from the AOI.
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classifier model trained with the top five variables from ANOVA to predict if infants

were learners or non-learners. This was done only for the testing phase, because

the testing phase images for adults and infants are similar so that the extracted

variables correspond. Infants were classified with 49% accuracy in the category A or B

condition. Infants were classified with 51% accuracy in the category C or D condition.

These chance performance of the adult model identifying infant learners suggests that

adults and infants attend to category objects differently. The remaining challenge is

to examine the generality of this finding by testing a broader set of categories.

4.3 Discussion

The analysis demonstrates that the proposed methodology for identifying relevant

eye tracking variables is viable. We can predict if adults have learned a category

based on a very small number of top ranked eye track variables. Furthermore, there

is strong agreement between the different ranking approaches about which variables

are most important. Specifically, the consistently top ranked variables in the learning

condition were latency to a fixation at the relevant AOI, density of fixations at the

relevant AOI, and first and second fixations at the relevant AOI. The consistently top

ranked variables in the testing condition were first, second, and third fixations, and

second saccade. These results suggest that during learning, adult category learners

focus their attention on the relevant category features. The results also suggest that

adult category learners make discrimination judgments within the first few fixations.

The infant data analysis also demonstrated that we can predict category learning,

but it requires a larger number of variables. Again, there was agreement between the
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different ranking approaches about which variables are most important. The consis-

tent top variables in the learning and testing conditions describe the fixation density

at different AOIs and at different distances from the relevant AOIs. The fourth and

sixth fixations were also relevant in the testing condition. These results suggest that

for infants, the pattern of fixations over the entire object is more informative than

the amount of time fixating the relevant AOI. Therefore, it appears that whereas

category learning in adults is marked by focused attention to category-relevant fea-

tures, category learning in infants is marked by more diffuse attention coupled with

exploration of multiple areas of interest.

Finally, we showed that the adult model does not predict infant category learning.

We address these findings in the next section.

4.3.1 Why were the best variables different for infants and
adults?

There is an important difference between the variable selection results of the adult

experiment versus the infant experiment. Namely, while adult learners are identified

readily with a small set of variables emphasizing early looks at the relevant AOI(s),

infant learners are better identified based on their pattern of fixating over the trial.

We propose an explanation based on the goals of adult versus infant participants.

Although the experiment stimuli were the same for adults and infants, there were

fundamental differences in the design of the experiments. Namely, the objectives

during the experiment were different for adults versus infants. In the case of adults,

the participants were given a particular task: learn how to identify a member of a

given category from a set of exemplars, then identify a member of this category from a

pair of objects. Therefore, the adults’ goal was to learn the category object as quickly
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as possible given the limited number of training examples, such that discrimination

could be performed accurately during the testing phase. Given this goal, it was

reasonable that the consistently selected variables were associated with relevant AOI

fixation density as well as early looks (see Table 4.2 ).

In the case of infants, we used sound and motion to draw the infants’ attention to

the relevant AOI in hopes that he or she learned to identify the category object. Then,

we assumed that if the category was learned, the infants would show a preference

for either the learned category or novel category during the discrimination phase.

To this uncertainty, we ought to add the large amounts of random movements of

the infant’s gaze. As we see in our results, a larger set of variables is required to

reliably distinguishing learners from non-learners. In addition, while fixation density

is important, the emphasis is not on fixating the relevant AOI.

4.4 Conclusion

We have developed a methodology for automatically identifying eye tracking vari-

ables relevant to a given task. Previous research has relied on ad-hoc techniques

to determine which variables should be analyzed in a particular study. Instead, we

used statistical methods to find the important variables in an over-complete set of

variables. The efficacy of the approach was verified with an adult and infant catego-

rization study. The variables determined most relevant for adults emphasize looking

at the relevant AOI(s) longer, and earlier during the categorization tasks. This result

is satisfying for two reasons: 1) It is expected that category learners quickly focus

their efforts on the relevant AOI(s), and 2) these variables coincide with the variables
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proportion fixation time and relative priority of previous eye tracking category learn-

ing studies such as [95]. The variables determined most relevant for infants emphasize

the overall pattern of fixating the object. This result is also satisfying because infants

are expected to explore objects.

Note that the important variables were verified by the task and stimuli described.

Altering these parameters may result in different important variables. By comparing

the important variables among different tasks and stimuli, we can further dissociate

which eye tracking variables are linked to specific processes during categorization.

Our method provides a technique for identifying the most relevant variables in each

of these cases.
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CHAPTER 5

VARIABLE SELECTION IN THE PERCEPTION OF
FACIAL EXPRESSIONS OF EMOTION

This chapter is concerned with characterizing the way people recognize proto-

typical facial expressions of emotion. By prototypical emotions, we refer to the six

basic emotions hypothesized to be recognized across cultures [32]: happiness, sadness,

anger, disgust, surprise, and fear, plus neutral meaning no emotion is expressed. The

previous works in modeling the face appearance and exploring categorization through

eye tracking are the foundation for modeling emotion recognition that is developed

here. We apply ideas from those works to understand, through eye tracking, the

important features used in the perception of emotion from expressive faces.

Researchers have been concerned with the expression of emotion in faces and their

subsequent recognition for over 150 years. In his pioneering work, Mécanisme de la

Physionomie Humaine [25], Duchenne gives a meticulous account of the mechanism

of facial expression production in humans. Duchenne used electrodes to stimulate

individual face muscles to determine which muscles produced different facial expres-

sions of emotion. By moving a single feature such as raising the eyebrows, he noticed

the entire face appears to change expression. He also noted that certain muscles could

not be voluntarily controlled, but moved involuntarily in response to an emotional
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state. He attributed this to an emotion of the soul. Duchenne argued that the ability

to express specific emotions by contracting the same sets of muscles is innate and

universal, in a manner defined by the Creator.

Just a decade later in 1972, Darwin published his influential work, The Expres-

sion of the Emotions in Man and Animals [24], where he sought to characterize the

movements of features of the body that characterize certain states of mind. He ar-

gued an evolutionary perspective, that the facial expressions of emotion are rooted

in a common ancestor. Through studies of small children, the blind, the insane, and

different cultures, he argues why many emotional expressions of the body are inher-

ited habitual actions that were consistently associated with some state of mind, or

emotional state.

These habitual actions are similar to reflexes. They may have served some purpose

at one point, and are inherited. For example, dogs will circle around on the carpet

before going to bed as if to make a recess to sleep in. This action is probably inherited

from previous generations of dogs that lived outdoors. There are also some opposite

actions, actions of the body that directly oppose some habitual action, and become

themselves habitual and inherited. Finally, actions due to excessive nerve force, such

as shaking during terror, can also be inherited.

Ekman built upon the ideas of Duchenne and Darwin in his own research of emo-

tional facial expression. He argued through cross-cultural studies, among others, that

some emotional expressions are innate, and recognizable across cultures: happiness,

sadness, anger, disgust, surprise, and fear [32]. One criticism of cross cultural stud-

ies in testing the innateness of the facial expressions of emotion is that many tested
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cultures have been exposed to western media, allowing them to learn the expres-

sions. Therefore, Ekman conducted studies with members of a pre-literate culture in

New Guinea that had not been exposed to Western media. He read participants a

story having some emotional content, then showed them three photographs of models

expressing different prototypical facial expressions. Participants identified the faces

displaying the emotional relevant to the story, although they had difficulty distin-

guishing fear from surprise.

A significant amount of developmental research has also been conducted to deter-

mine if the perception of emotional expressions is innate, or learned. Several studies

have suggested that infants discriminate between different facial expressions of emo-

tion as early as 36 hours after birth [40]. In this study 74 neonates averaging 36 hours

were habituated to the facial expressions of happy, sad, and surprise by a model who

fixed each expression on her face as the baby looked at her. An observer unaware of

the model’s expression was able to guess which expression was shown to the neonate

based on the neonate’s imitation of the model’s facial expression. Visual fixation sig-

nificantly reduced later in the trial, and significantly increased once a new expression

was shown, providing evidence for discrimination. Another study by Young-Browne

et al. [130] found evidence for discriminating sad, happy, and surprise by 3-month-olds

using an infant controlled habituation-recovery procedure.

There are important concerns regarding the findings of those studies. Some au-

thors have noted that it is unlikely that infant visual system is developed enough

to perceive the expression relevant face information much younger than 4 months

[17, 83]. Second, we cannot be certain that the infant dehabituates due to a novel

emotion category, or to some noticed change in the face, such as a mouth opening or
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closing. To test for the recognition of emotional expression categories, authors have

familiarized infants to facial expressions posed by one or more models, and tested

the discrimination of emotions posed by yet another model. Using this approach,

evidence has been found for the categorical discrimination of emotional expressions

from as early as three months. Nelson and Dolgin found evidence for discriminat-

ing happy versus fear in 7-month-olds [85], although discrimination was only evident

when the infants first habituated the happy face. Such asymmetry was found for

other cases of discriminating anger. For example, Schwartz et al. [104] found that

5-month-olds could discriminate anger, fear and sadness, except when anger was the

novel stimuli. Unlike other studies, they failed to show evidence for discriminating

between joy, anger, and interest in that age group. Caron et al. [17] tested 41
2
-, 6-,

and 7-month-olds ability to discriminate happy from surprise across identities. The

youngest group did not generalize discrimination across identities, while the 6-month

group discriminated only when habituated to happy. The oldest group generalized

discrimination across identity. In summary, the developmental literature suggests

that at least some aspects of emotion recognition are innate, with experience playing

an important role over the first two years [84].

Besides the question of nature versus nurture, another fundamental question re-

mains. Specifically, there is debate about whether emotions are actually perceived

is distinct categories, or vary continuously across underlying dimensions. The first

school of thought gives rise to the categorical model which assumes that each emotion

is associated with a dedicated neural system that is active in response to the emotion

or when expressing it. Researchers have proposed a set of emotion categories from

as early as the 1920s and tested participants’ judgment of a variety of emotion face
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stimuli using a set of possible words [1, 41, 125, 90, 120, 87]. It is not possible to

conclude that emotions are categorical, but by summarizing the findings from these

early studies we can conclude that seven posed emotion categories can be recognized

from photographs: happiness, surprise, fear, anger, sadness, disgust, and interest [31].

A short review of the categorical model along with supporting evidence can be found

in [129].

Soon after the theory of emotion categories, emerged the emotion dimension the-

ories [103, 87, 57, 42, 91]. This alternative approach, called the continuous model,

assumes that emotions arise from continuous overlapping neural systems which define

common dimensions such as pleasantness and intensity along which all emotions vary.

These works taken together suggest that there may be two or three dimensions un-

derlying the emotions, but there is disagreement about what the dimensions should

be. A short review of the continuous model along with supporting evidence can be

found in [91].

We do not address the question of whether a categorical or continuous model

better explains human behavior. Instead, we address the more specific questions

of where emotion information is evident in the face, and how the features used for

recognition of emotional expression categories change over development. Previously,

research has shown that adults exhibit different looking patterns when looking at

different emotional facial expressions [30]. An example is shown in Fig. 5.1 for the

7 prototypical emotions. These maps are obtained by standardizing the weighted

fixation density maps to zero mean and unit variance, averaging across all trials for

each emotion separately, then subtracting the overall mean of all standardized fixation

density maps. The weighted fixation density maps describe the fixation pattern over
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Figure 5.1: Marginal fixation density maps for the different emotions for adults with
respect to the overall mean.

trials, such that areas fixated for longer have a large value. Gaussian smoothing is

applied to account for slight differences in fixation positions.

Since gaze is linked to attention allocation over time, we hypothesize that the dif-

ferences in gaze sequence may reflect different relevant face features when recognizing

different emotions. If the gaze sequence differs systematically for different emotions,

then the gaze sequence should be diagnostic of the stimuli’s emotion category. We

do an eye tracking study in order to understand what drives these differences in gaze

and to answer the following key questions about emotion recognition.

1. What features of the face are relevant to emotion recognition? Are these features

different for different emotion categories?

2. Which aspects of the gaze such as fixations, saccades, and sequence are most

informative about the emotion stimulus.

3. Is a particular segment of the face viewing time more informative than the

others?

4. How does that pattern of looking change over development?
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These questions are concerned with the cognitive space of emotion recognition. The

important features and aspects of gaze suggest appropriate dimensions for represent-

ing the emotions.

The analysis requires that we expand the methodology developed for the simple

category objects of the previous chapter. Those category objects are well defined in

that a single specific rule based on a single AOI defines the object category. However,

the dimensions for emotion recognition from expressive faces are not as obvious. It

is known that the face muscles contract and relax in ways that are characteristic of

the different facial expressions [33], and identifying these muscular configurations is

one computational approach to emotion recognition [119]. However, recent research

has suggested that configural features may play a significant role in emotion percep-

tion [86], with shape and texture being the other two alternatives we must consider.

Therefore, our analysis makes use of the gaze pattern over the entire face as well as

the first order sequence, which may relate to relational information extraction. We

also expand our standard toolbox of linear classifiers to include cascade based classi-

fiers which will better model stage-wise recognition approaches. The results suggest a

holistic face representation for recognizing emotional facial expressions, with certain

areas having influence on gaze according to the emotion category.

5.1 Methodology

5.1.1 Participants

This study was approved by a Behavioral and Social Sciences IRB at The Ohio

State University. Thirty-four adults participated in the study. They were introduc-

tory psychology students at The Ohio State University who participated for course
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credit. They were given sufficient information and signed a consent form before freely

participating in the study. Twenty-one infants participated in the study. Their par-

ents were given sufficient information before providing written consent. All parents

reported their infants to be developing typically and without known health problems.

5.1.2 Materials

Adult eye movement was recorded by an Eyelink 1000 Tower (SR Research, On-

tario, Canada ) at 1000Hz. Participants sat with with their chin resting on a mount

and their eyes approximately 60cm from a 12 × 16 inch display, spanning approxi-

mately 28◦ vertical by 37◦ horizontal visual angle. A simple eye dominance test was

performed before the experiment, and only the dominant eye was tracked.

Infant eye movement was recorded by an Eyelink 1000 Remote Arm (SR Research,

Ontario, Canada ) at 500Hz. Infant participants were buckled into a car seat with

their eyes approximately 60cm from a 10.5 × 13.25 inch display, spanning approxi-

mately 25◦ vertical by 31◦ horizontal visual angle. Typically only the right eye was

tracked, unless there was difficulty during calibration. In such a case, the left eye was

tracked if calibration was successful with the left eye.

5.1.3 Experiment 1 - Adults

In the adult experiment, participants were first instructed that they would be

presented with a series of emotional face photographs, and asked to identify which

emotion was expressed after each photograph. Next, we showed participants a screen

with a labeled example of all 7 emotions ( happiness, sadness, anger, disgust, surprise,

fear, and neutral). Subjects reviewed the examples and pressed a button on a hand

held controller when they were ready to proceed.
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Before each block, the camera was calibrated on a 9 points grid and mean error

was verified to be less than 1◦ of visual angle. Every stimulus image was preceded

by a drift correction screen, which allowed to eye tracker to compensate for small

errors and let the experimenter re-calibrate the camera if the accuracy reduced. The

drift correct screen was gray with a centered cross-hair. Subjects were instructed to

fixate the cross-hair. An experimenter sitting at the eye tracking computer monitored

the gaze position and pressed enter when the subject was fixating the cross-hair to

prompt the stimulus display.

Adult stimuli were centered and contrast normalized grayscale face photographs of

expressive faces posed by models of different gender and races, spanning 23◦ vertical

by 15◦ horizontal visual angle. The images were displayed for 2000 ms, immediately

followed by the response screen. The top of the response screen always displayed the

question “What best describes the emotion just seen?”, with the following options

arranged in a circle: happiness, sadness, disgust, neutral, fear, surprise, and anger.

The position of the seven choices was constant within subjects, but randomized across

subjects. Subjects responded by looking at their answer to highlight it then selected

the highlighted answer by pressing any button on a hand held controller. This allowed

subjects to respond without looking away from the screen or moving their head.

The experiment began with a practice block where the participants saw an example

of all seven emotions and become familiar with the method of answer selection. Then,

there were 182 trials consisting of 26 different examples from all 7 emotion categories.

The order of their presentation was randomized across subjects. The experiment was

split into 4 blocks of approximately 46 trials each. Before each block, participants

were given a short break to stretch and and rest their eyes.
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5.1.4 Experiment 2 - Infants

The infant experiment used an infant controlled paired discrimination design to

test for discrimination of the emotion categories across infants of different ages. The

neutral category was removed to account for the limited duration of infant cooperation

while testing a broad set of emotion categories. Photographs were presented in pairs

so that that familiarization and discrimination trials had uniform layout. The camera

was calibrated at the beginning of the experiment on a 3 points grid where a looming

audible circle attracted participants’ attention to the calibration points.

The experiment proceeded through six blocks, where each block checked for par-

ticipants’ ability to discriminate all the emotional expression categories from one

familiarized category exemplar. The order of the emotions to familiarize in each

block was randomized across subjects.

Each block began with drift correction and an attention grabbing movie. Familiar-

ization began when the infant fixated the center of the screen. On each familiarization

trial, we showed an identical pair of images from a particular category for 4000 ms,

immediately followed by a blank screen for 200 ms. The images were grayscale and

illumination normalized emotional face photographs of different models of different

genders expressing the six prototypical emotions. Only photographs of Caucasian

models were used, and earrings were digitally removed. Each photograph spanned

approximately 19◦ vertical by 13◦ horizontal visual angle. Each image was positioned

at approximately 8◦ horizontal visual angles from the center of the screen.

To assess discrimination of emotion expression category across identity, we showed

three exemplars of different identities, and repeated the sequence of three images

until total looking time within the three face pairs reduced by 30% of the initial

102



looking time, looking dropped below 2000 ms, or five iterations of all three images

were presented. We then performed drift correction to allow the experimenter to

recalibrate if necessary before proceeding with the discrimination trials.

Each discrimination trial began with an attention grabbing movie drawing the

infant’s attention to the center of the screen. Once fixated at the center, we displayed

two different images of expressive faces posed by the same model for 4000 ms. One

was an exemplar from the familiarized emotional expression category while the other

was a novel expression. For every novel category, we showed two separate identities

modeling both the familiarized and novel category. The horizontal position of novel

exemplar was counterbalanced. Familiarization was repeated after three categories

(six trials), before testing the last two categories of the block (four trials).

5.1.5 Aligning Gaze

Gaze sequence is typically described as a weighted fixation density map (WFDM)

which describes the overall pattern of fixating the 2D image, weighted by the amount

of time spent fixating the different areas. However, there is much more information

such as the fixation or saccade latency contained in the series of saccades and fix-

ations over each trial. Therefore, similar to our previous work on identifying the

variables relevant to categorization, we encode each additional variable using a gaze

map (GM). Examples are shown in Fig 5.2 for the six different GMs analyzed for a

single experiment trial.

The GM representation is convenient for comparing the gaze pattern across sub-

jects and stimuli when using aligned stimuli images, such as schematic faces. One

important problem is spatially aligning the gaze information when comparing the
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Figure 5.2: The six GMs are displayed above for a single trial. From left to right, the
maps correspond to the weighted fixation density map, unweighted fixation density
map, fixation latency map, saccade density map, saccade latency map, and saccade
velocity map.

gaze sequences across realistic emotional face photographs. Alignment is necessary

because the AOIs are not aligned in realistic face photographs so that we cannot

directly compare GMs. To overcome this, researchers typically define discrete AOIs

based on important anatomic landmarks and record fixations and saccades with re-

spect to the these regions [58, 30, 88, 97]. This approach dramatically reduces the

feature space dimensionality while solving the spatial alignment problem, and has

the additional benefit of specifying a discrete set of states for subsequent modeling

of the first order gaze sequence. The drawback is that this approach assumes a set

of pre-defined AOIs. In the case of faces, the AOIs are usually restricted to the eyes,

nose and mouth [58, 88, 97], or eyes and mouth [96] depending on the goal of the

study.

One alternative is to warp all the face images and the corresponding gaze coor-

dinates to a canonical face shape, then compare the gaze pattern over the aligned

images. The advantage of this approach is that it is no longer necessary to pre-define

AOIs because GMs can be compared directly after alignment. Furthermore, it allows

the analysis to determine important face regions which may not be obvious a priori.
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(a) Canonical face
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(b) Areas of interest

Figure 5.3: Fig. (a) illustrates an example neutral face warped to the canonical shape.
Key points are shown in red. Fig. (b) shows the discrete AOIs. From one to four,
the AOIs correspond to the right eye, left eye, nose, and mouth.

We apply this approach and align the faces using piecewise linear warping with 33

landmarks. An example is shown in Fig. 5.3(a).

5.1.6 Gaze variables

The GMs describe the following variables: wighted fixation density, unweighted

fixation density, fixation latency, saccade density, saccade latency, and saccade veloc-

ity. Every GM is formed by first creating an image of the face region where every pixel

is zero. In the weighted fixation density map, the locations of the fixations are set to

the total fixation duration at those positions in milliseconds. The image is convolved

with a Gaussian, and maps are normalized to zero mean and unit variance. In the

unweighted fixation density maps, the locations of the fixations are incremented by

one before convolution and normalization. This map essentially describes the number
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of fixations in an area without accounting for the total time fixating that area. Fixa-

tion latency maps set the locations of the fixations to be the time since the previous

fixation (or trial start) in milliseconds. These maps are also convolved and normalized

as before. Saccade density maps are similar to the unweighted fixation density maps,

except the saccade target positions are incremented by one. Saccade latency maps

are similar to fixation latency maps, except that the saccade target positions are set

to the time elapsed from the start of the previous saccade (or trial start) to the start

of the current saccade. In the saccade velocity maps, the saccade target positions are

set to the average velocity of that saccade before convolution and normalization.

5.1.7 Emotion classifiers

Linear Discriminant Analysis

As mentioned before, linear discriminant analysis (LDA) for the C class classi-

fication problem seeks to find the C − 1 dimensional subspace to project the data

which minimizes the Bayes error. In the two class problem with Normal distributions

having equal covariance, the data is projected to the one dimensional space which

achieves this minimum error. In our case, we wish to classify the 7 basic emotions

(6+ neutral) so the data would be projected to the 6 dimensional subspace for clas-

sification. However, we have an additional goal of wanting to determine the most

discriminative face areas so we would also like to project the gaze data to the optimal

one dimensional subspace. LDA does not guarantee a 1 dimensional subspace which

is best, so we use the algorithm proposed by Hamsici and Martinez [53] which solves

this problem. The algorithm works by splitting the problem into a series of solvable

convex problems. Essentially, there are a set of convex regions over which the one

dimensional projection of the class means have a fixed ordering. The Bayes error over
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these convex regions is also convex and given by [43] as

2C−1

C−1∑
i=1

Φ(
µ̂i − µ̂i+1

2
), (5.1)

where Φ is the standard Normal cumulative distribution function and

µ̂i =
vTµi√
vTΣv

, (5.2)

are the whitened ordered mean vectors projected onto the unit vector v. The opti-

mal v is found by minimizing the Bayes error for all orderings of the whitened class

means, and selecting the solution with smallest error. To find the C − 1 dimensional

subspace to separate the classes, the algorithm iteratively finds the best one dimen-

sional subspace in the nullspace of the previous solution. The samples are classified

by the nearest mean in the projected space. Throughout the discussion, we refer to

this algorithm as Bayes discriminant analysis (BDA) to distinguish from the standard

LDA.

Decision Trees

The idea of decision trees is to iteratively split the feature space into smaller

regions using straightforward decision rules in order to do classification. The classifier

amounts to a cascade of simple classifier nodes, where at each stage of the cascade, a

particular decision rule is evoked according to the result of the previous node. A test

sample is proceeds through the cascade of decision nodes until a termination node,

where the sample is assigned to a particular class. The decision nodes apply the

linear classifier proposed by Hamsici in order to split the data such that the Bayes

classification error is minimized at each iteration. Whereas some decision trees form

decision nodes by splitting the data along one feature dimension, our algorithm splits
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across the entire feature space at every decision node. We extend this idea to make

use of the variety of GMs which represent the gaze on each trial. Specifically, our

algorithm considers the Bayes error at every decision node for each GM separately,

and the decision node relies on the GM which gives the best result at that node of

the tree.

Normalized Scanpath Salience

The normalized scanpath salience (NSS) method used by Peters et. al. [89] con-

siders the agreement of the participant’s fixation positions with a saliency map. In

our case, the salience maps are zero mean unit variance GMs corresponding to the

fixation patterns of each emotion. Classification is performed by summing the value

of each salience map at the fixation positions on one trial. The emotion viewed is clas-

sified as the one associated with the salience map which gives the largest value. Each

saliency map is the average weighted fixation density map attributed to a particular

emotion for all trials and all subjects.

Markov Model

A Markov model is a probabilistic model which assumes the Markov property [94].

In this model, a random variable (or set of random variables) transitions through a

series of states, with certain transition probabilities. The Markov property means that

the conditional probability distribution of future states only depends on the current

state. Let us assume a system has S discrete states. The system will transition

from state i to state j with probability aij. The aij are called the state transition

coefficients. They have the properties that aij ≥ 0 and
∑S

j=1 aij = 1, since the

probability that a state transitions to all possible states must sum to unity. We define
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the initial state i probability as pi. Then, the probability of an observed sequence is

given by the product of the corresponding initial probability and the state transition

coefficients. In our case, the sequence of states correspond to the AOIs fixated during

a trial.

5.2 Results

5.2.1 Adult Analysis

Effect of emotion category and face area on gaze

We performed a repeated measures ANOVA to determine if emotion category,

face area, and emotion × area interaction were statistically significant factors in

the looking times over different face areas. We considered the total fixation time

within the four discrete regions in Fig. 5.3(b) as a percent of the total time fix-

ated within the face area. We applied a square root transformed to the percent

looking times preceding the repeated measures ANOVA analysis, since the trans-

formed but not original data were normally distributed. Mauchly’s test indicated

that emotion category, face area, and emotion × area failed to conform to the as-

sumption of sphericity (Mauchly’s W = .032, χ2(20) = 105.9, p < .001; Mauchly’s

W = .670, χ2(5) = 12.7, p = .027; Mauchly’s W = .000, χ2(170) = 293.8, p < .001).

Therefore, results include Greenhouse-Geisser correction. We found the within sub-

ject factors of emotion category, face area, and emotion × area were all significant

(F (2.36, 77.9) = 6.17, p = .002, η2
p = .16; F (2.48, 81.75) = 10.3, p < .001, η2

p = .24;

F (7.88, 260.1) = 11.7, p < .001, η2
p = .26). We further considered face area as a

factor on looking times within the emotion categories separately, to see if particular

emotions or areas were causing the effect.
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For the expression anger, Mauchly’s test indicated that face area conformed to

the assumption of sphericity (Mauchly’s W = .806, χ2(5) = 6.83, p = .234). We

found that face area was a significant factor on percent looking time (F (3, 99) =

15.8, p < .001, η2
p = .323). Post hoc comparisons on region in angry faces showed

that participants spent less time looking at the mouth than any other area of the

face (mouth vs. right eye: p < .001; mouth vs. left eye: p < .001; mouth vs. nose:

p = .007).

For the expression disgust, Mauchly’s test indicated that face area did not conform

to the assumption of sphericity (Mauchly’s W = .648, χ2(5) = 13.8, p = .017). There-

fore, results include Greenhouse-Geisser correction. We found that face area was a

significant factor on percent looking time (F (2.40, 79.1) = 9.70, p < .001, η2
p = .227).

Post hoc comparisons on region in disgust faces showed that participants spent less

time looking at the mouth than any other area of the face (mouth vs. right eye:

p = .001; mouth vs. left eye: p < .001; mouth vs. nose: p = .003).

For the expression fear, Mauchly’s test indicated that face area conformed to

the assumption of sphericity (Mauchly’s W = .766, χ2(5) = 8.44, p = .134). We

found that face area was a significant factor on percent looking time (F (3, 99) =

5.85, p = .001, η2
p = .151). Post hoc comparisons on region in fearful faces showed

that participants spent less time looking at the mouth than the eyes (mouth vs. right

eye: p = .046; mouth vs. left eye: p = .009). In addition, people looked at the left

eye more than the nose ( p = .044).

For happy facial expressions, Mauchly’s test indicated that face area conformed

to the assumption of sphericity (Mauchly’s W = .743, χ2(5) = 9.43, p = .093). We

found that face area was a significant factor on percent looking time (F (3, 99) =
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4.36, p = .006, η2
p = .117). Post hoc comparisons on region in happy faces showed

that participants looked at the right eye more than the nose ( p = .038).

For neutral faces, Mauchly’s test indicated that face area did not conform to the

assumption of sphericity (Mauchly’s W = .618, χ2(5) = 15.3, p = .009). Therefore,

results include Greenhouse-Geisser correction. We found that face area was a signifi-

cant factor on percent looking time (F (2.33, 76.8) = 16.3, p < .001, η2
p = .331). Post

hoc comparisons on region in neutral faces showed that participants spent less time

looking at the mouth than any other area of the face (mouth vs. right eye: p < .001;

mouth vs. left eye: p < .001; mouth vs. nose: p = .009). In addition, people look at

the left eye more than the nose ( p = .047 ).

For the sad expression, Mauchly’s test indicated that face area did not conform

to the assumption of sphericity (Mauchly’s W = .679, χ2(5) = 12.3, p = .031). There-

fore, results include Greenhouse-Geisser correction. We found that face area was a

significant factor on percent looking time (F (2.44, 80.5) = 8.97, p < .001, η2
p = .214).

Post hoc comparisons on region in sad faces showed that participants spent signifi-

cantly less time looking at the mouth than the eyes (mouth vs. right eye: p < .001;

mouth vs. left eye: p = .002).

For surprise facial expressions, Mauchly’s test indicated that face area conformed

to the assumption of sphericity (Mauchly’s W = .743, χ2(5) = 9.42, p = .094). We

found that face area was a significant factor on percent looking time (F (3, 99) =

13.3, p < .001, η2
p = .287). Post hoc comparisons on region in surprise faces showed

that participants looked at the eyes longer than other areas (right eye vs. nose:

p = .009; right eye vs. mouth: p < .001; left eye vs. nose: p = .001; left eye vs.

mouth: p < .001).
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Overall the result suggest that the percentage of time looking at certain face areas

depends on the emotion category of the stimulus. People spend a significantly shorter

amount of time looking at the mouth for the expressions anger, disgust, fear, neutral,

and sad. People looked longer at the left eye than the nose for neutral and fear.

People looked at the right eye longer for happy faces, and at both eyes longer for

surprise.

Predicting emotion category from gaze

Given the differences found across emotions, we then determined which aspects of

the gaze were most informative about the emotion being viewed, and which areas of

the face were most important. We classified the viewed emotion using BDA and the

different GMs for the full trial duration. We first tuned the Gaussian parameter for

each map separately using cross validation. Those results are shown in Fig. 5.4. The

results show that weighted and unweighted fixation density GMs achieved the best

results of approximately 24% 5 fold CV accuracy in predicting the stimuli emotion

from the gaze. The analysis will therefore focus on those GMs when appropriate.

We tested to see if these systematic differences were manifested in the overall

pattern of fixations or saccades during a segment of the trial as well as over the entire

trial. We calculated the GMs for time ranging from the start of the trial to the end of

the trial in increments of 200ms, then determined the 5 fold CV accuracy when using

BDA to classify the stimuli emotion. We also calculated the GMs for a duration of

400ms from the start of the trial in steps of 200ms. The results are shown in Fig.

5.5. The plot of Fig. 5.5(a) shows that the accuracy in discriminating the emotion

category from the GM peaks and stabilizes at about 24% when considering the trial

time from the beginning until about 1800ms throughout the end of the 2000ms trial.
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Figure 5.4: 5 fold cross validation accuracy for predicting the stimuli emotion label
from the different GMs. The legend entries from top to bottom correspond to fixa-
tion latency, weighted fixation density, unweighted fixation density, saccade density,
saccade latency, and saccade velocity. The weighted fixation density and unweighted
fixation density GMs achieve the best accuracy of 24.3% at σ = 5 and 24.1% at σ = 5.

On the other hand, Fig. 5.5(b) shows that there is a peak in discrimination accuracy

of about 19.5% for the 200−600ms time segment until the 600−1000ms time segment

for weighted fixation density. There is a higher peak accuracy of about 20% for the

400− 800ms time segment for unweighted fixation density.

We then visualized the most discriminative dimension for classifying the emotions

from the weighted FDM GM. Recall that in a linear classifier, the magnitude of

entries of the normal vector for the separating hyperplane gives the importance of

the different dimensions. In the case of more than two classes, we no longer find a

separating hyperplane, but a one dimensional subspace where we project that data.

Similar to the previous case, the magnitude of the entries of that unit vector give

the importance of the feature dimensions. Therefore, we plot the absolute value of

the subspace in order to visualize the most discriminative regions of the face. We
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Figure 5.5: 5 fold cross validation accuracy for predicting the stimuli emotion over
different durations of the trial. Fig. 5.5(a) shows accuracy when considering times
from the start of the trial until the end, in increments of 200ms. Fig. 5.5(b) shows
accuracy when considering 400ms time segments of the trial, starting with the first
400ms and stepping through the trial in increments of 200ms. We use the same legend
conventions as Fig. 5.4.

visualize this overlaid on a neutral face in Fig. 5.6. The figure suggests that the

fixation pattern over the entire face is most diagnostic of the emotion category.

Note that the classification performance and the dimensions revealed were deter-

mined for classifying all 7 emotions. We acknowledge that there may be differences

when classifying pairs of emotions. Therefore, we apply BDA to all pairs using the

weighted FDM GM for the full trial, and visualized as before in Fig. 5.7. There are

different patterns for the different emotions, although like in the 7 emotion case, the

decision classification is influenced by distributed areas of the face.

It may be the case that the the GMs have too much resolution, and the stimuli

should be discretized to a small set of AOIs for analysis. We discretize the interior of

the face to 4 AOIs including the eyes, nose, and mouth as shown in Fig. 5.3(b). We

achieve 5 fold CV accuracy of 19.4%.
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Figure 5.6: Visualization of the absolute value of the most discriminant dimension
for classifying all 7 emotion categories using the weighted FDM. The brighter peaks
correspond to larger values.

The previous analysis suggests that there are systematic differences in the allo-

cation of attention over the face. Here, we apply different classification models to

better understand what may be driving these differences. The success or failure of

the models gives insight into the important dimensions of emotion recognition.

We first apply the decision tree classifier. This model suggests that when rec-

ognizing emotions, we may first identify some categories while other categories may

require further discrimination. This model would explain why some emotions such

as happiness and surprise are recognized much easier than anger [28]. We found that

the best accuracy was achieved with a single decision node, corresponding to the

standard BDA classifier applied earlier. Using additional nodes in the tree classifier

only reduced the 5 fold CV classification accuracy to 16.7%.
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Figure 5.7: Visualization of the absolute value of the most discriminant dimension for
classifying pairs of emotion categories using the weighted FDM. The brighter areas
correspond to larger values, and more discriminant areas.
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We also explore an alternative that systematic differences in the pattern of viewing

different emotional expressions exist in the sequence of fixations. We model the

fixation sequence as a Markov process having a single random variable taking on

5 possible states corresponding to the eyes, nose and mouth of Fig. 5.3(b), with

an additional state for fixations outside those regions. Assuming that The success

of this model would suggest that there may be important relational measurements

consistently extracted from the face during emotion recognition. We achieve a 5 fold

CV accuracy of 21.2% for classifying all 7 emotions when using a MM approach to

predict the stimuli emotion label from the fixation sequence.

Finally, we apply the NSS method to predict the emotion label from the fixation

sequence. The success of this model suggests that the fixation sequence is dictated by

the emotion label of the stimuli. This process may result from differences in the face

appearance resulting from representative face deformations, or a top down process

directed by categorization. We achieve a 5 fold CV accuracy of 21.4%.

5.2.2 Infant Analysis

We found that neither the looking times nor their transformed versions passed tests

of Normality, so we omit the ANOVA analysis of emotion and face area on looking

times. Instead, we focus on infant discrimination performance, and a qualitative

measure of gaze differences with respect to emotion category. The marginal WFDMs

for the emotions tested are shown in Fig. 5.8. In this figure, we have combined the

looks on the left and right face during the familiarization trials because the pairs are

identical. Unlike the adult marginal maps, there is not a clear distinction between
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Figure 5.8: Marginal fixation density maps for the different emotions for infants with
respect to the overall mean.

the maps, except for the surprise expression where participants clearly look longer at

the mouth than the eyes.

To check for evidence of discrimination, we look at the habituation curves and

the percentage of novelty preference on the discrimination trials. The percentage

novelty preference is given as the total time looking within the novel expression face

over the time looking within both the novel and familiarized expression faces. We

expect infants that discriminate the expressions to prefer the novel expression face on

both trials of each novel expression. Some habituation curves and novelty preference

measures are shown for the 6− 10-, 11− 13-, 16- and 20− 24-month-old participants

in Figs. 5.9, 5.10, 5.11, and 5.12, respectively.

Since the number of participants and completed trials are limited, it is difficult

to assess how these effects generalize. In addition, the order of familiarization and

the refamiliarization within a block may have an effect. Therefore, we make some

qualitative observations about the data. First, across blocks, there is not a strong

novelty preference across emotional categories. In that cases that an infant shows

discrimination of two emotional categories, the pattern is not often repeated by other

participants in that age group.
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In the 6− 10-month-old group, some infants had a novelty preference for sad and

disgust faces when familiarized to happy faces. There was also novelty preference

for happy when familiarized to surprise faces. In the 11− 13-month-old group, some

participants showed novelty preference for surprise, sad, and disgust when familiar-

ized to angry faces. Some showed novelty preference for angry and disgusted faces

when familiarized to fearful faces, and novelty preference for happy when familiar-

ized to surprise faces. In the 16-month-old group, some participants showed novelty

preference for sad and angry faces when familiarized to disgusted faces. In the final

group, there was evidence of preference for happy when familiarized to fear, disgust

when familiarized to anger, and disgust when familiarized to surprise. Overall, it is

difficult to say whether the age groups are discriminating those categories since the

results are inconsistent across participants, and the order of blocks is sure to play a

role. Many more participants would be required to determine the generality of these

observations.

5.3 Conclusion

Our results suggest that there are some systematic differences in the way adults

look at different emotional faces, because we can classify the stimuli emotion based

on the fixation density and the sequence of fixations above chance level. However,

the gaze alone is insufficient to characterize the emotion label. While some face

areas may be more informative for some emotions, gaze patterns suggest that people

probably extract holistic face representation across all emotional faces, and make their

judgment about the emotion at a higher level of the processing stream.
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Figure 5.9: Habituation curves and percent novelty preference for infants in the 6−10-
month-old group. Red lines over the habituation curves denote a 30% drop in looking
time.

120



0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

Subject 9, 12 months
DI

lo
o
k
in

g
 t
im

e
 (

m
s
)

DI SU

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

HA
SA

FE

%
 n

o
v
e
lt
y
 p

re
fe

re
n
c
e

trial

SU
AN

AN

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

Subject 10, 12 months
DI

lo
o
k
in

g
 t
im

e
 (

m
s
)

DI AN AN SU SU FE FE SA SA HA HA

0 20 40 60 80 100 120 140 160 180
−0.2

0

0.2

0.4

0.6

0.8

1

FE
HA

AN

%
 n

o
v
e
lt
y
 p

re
fe

re
n
c
e

trial

SA
SU

SU
SA

HA

DI
FE

FE
DI

SA

AN
HA

SA
AN

HA

DI
SU

SU
FE
AN

DI
HA

SU
AN
FE

SA
DI

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

Subject 11, 12 months
HA

lo
o
k
in

g
 t
im

e
 (

m
s
)

HA AN AN SU SA

0 10 20 30 40 50 60 70 80 90
−0.2

0

0.2

0.4

0.6

0.8

1

DI
FE

SA

%
 n

o
v
e
lt
y
 p

re
fe

re
n
c
e

trial

AN
SU

DI
SA

HA

SU
SU

SU

FE
SA

DI

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

Subject 12, 12 months
HA

lo
o
k
in

g
 t
im

e
 (

m
s
)

HA DI

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

SU
SA

DI

%
 n

o
v
e
lt
y
 p

re
fe

re
n
c
e

trial

FE HA

Figure 5.10: Habituation curves and percent novelty preference for infants in the
11 − 13-month-old group. Red lines over the habituation curves denote a 30% drop
in looking time.
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Figure 5.11: Habituation curves and percent novelty preference for infants in the 16-
month-old group. Red lines over the habituation curves denote a 30% drop in looking
time.
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Figure 5.12: Habituation curves and percent novelty preference for infants in the
20 − 24-month-old group. Red lines over the habituation curves denote a 30% drop
in looking time.
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Infants are shown to look more uniformly at the face across different emotions,

except for the surprise expression where they look longer at the mouth. However, we

show some evidence that infants from as early as 8 months can discriminate emotional

expression categories across changed identities. However, more data is required to

make definitive claims since the sample size within age groups is very small.
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CHAPTER 6

CONTRIBUTIONS, CONCLUSIONS, AND FUTURE
DIRECTIONS

We have made several contributions regarding deformable shape detection, the

identification of relevant eye tracking variables, and the dimensions for recognizing

emotional facial expressions. In this chapter we summarize our major contributions

and conclusions, and discuss directions for future work.

6.1 Contributions and Conclusions

Our manifold learning shape detection work has shown that it is possible to learn

the function relating an object image to the shape, so that detailed face shape can be

detected in one iteration. The method is flexible enough to handle different identities

and expressions, and can work in very low resolution settings. We showed that while

other regression approaches can give similar results in high resolution settings, the

local feature based regression methods do not work as well in the very low resolution

case. Our other shape detection algorithm based on probabilistic graphical models

combines the positive aspects of local feature detection and global shape modeling in

order to provide a precise and dense shape detection. Previously, graphical approaches

have only detected a small set of salient points, whereas we detect many salient and
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non-salient landmarks. In addition, we showed that our approach generalizes across

databases better than global appearance modeling algorithms like AAM.

Our methodology for automatically identifying the variables relevant to catego-

rization has found a small set of variables that predict if participants learned visual

categories. Previously, ad hoc approaches were used to determine which variables to

analyze in a study - possibly ignoring important aspects of the data. Instead, our

method determines which aspects of gaze are informative from a large pool of pos-

sible variables. In addition, the results validate the use of several variables such as

proportion fixation and fixation latency that have been used in previous categoriza-

tion studies. More interesting is the finding that the variables corresponding to the

overall pattern of infant looking allow us to predict if infants learned the category.

This suggests that infants are not directing their attention randomly.

In our emotion perception work we have shown that although the gaze does differ

slightly when viewing different emotional expressions during a categorization task, the

gaze alone may be insufficient to discriminate the emotion category. The methodology

presented also demonstrates how to compare gaze across non-schematic faces, and how

to determine which aspects of the gaze are most informative. Specifically, we found

that fixation density was more informative that the saccade and latency information.

In the infant experiments we found evidence that infants probably can discriminate

between even the difficult emotional expression categories such as disgust and anger.

We also found that qualitatively, infants look at the same internal areas of the face

as adults.
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6.2 Future Work

We acknowledge that this research has built on several earlier studies, and we

offer some ideas and directions for the extension and continuation of our research.

In the case of the shape detection by manifold learning, the main difficulties are

interpolating the shape of test samples from different databases, and detecting subtle

shape deformations such as single eye blinks that are not well represented in the

training set. Given that the method relies on a regression model, an image feature

space, and a shape model, the obvious direction for progress is to improve those

components of the approach. For example, we can use a different loss function for

the regressor, or a different feature space for the image space.

In our unpublished work, we have explored detecting the shape of components

of the face such as the eyes and mouth separately. We found that this can yield

precise detection of those components since the shape model must only account for

the deformation of local shape regions, but requires that the components are localized

precisely in the test image. We also found that the detection performance suffers from

poor normalization of the faces before detection, and by iteratively optimizing the

object location and shape, we can improve accuracy. The difficult with this approach

is that we must establish some criterion for how well the face is localized. We have

tried using probabilistic texture models as in AAM, but occluded faces yield a low

probability even when they are precisely localized. One promising direction for future

research is to develop a robust criterion for proper localization to assist subsequent

detection of the face shape, or its parts.

Our probabilistic graphical model can benefit from a more flexible graph structure,

and a faster inference procedure. The potential functions describing the expected
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relative positions of landmarks assume a Gaussian form, which may be inappropriate

for some landmark pairs. For example, the distance between the top and bottom lip

may exhibit a bimodal distribution corresponding to an open or closed mouth, which

is not modeled well by a single Gaussian distribution. In addition, the inference

procedure is too slow to detect a dense set of points in real time.

In our variable selection for categorization study we identified some variables that

predict category learning, but it is not certain whether these variables are generally

important to categorization or specific to this experiment. For example, would we

still find that the proportion of looking at the relevant area is predictive of category

learning in adults if no supervision took place? Even more fundamental of a contribu-

tion would be a procedure for comparing infants to adults. As mentioned in chapter

4, the infants and adults have different goals during the categorization task since

unlike infants, adults are explicitly asked to learn and identify a category. Equating

the goals of adults and infants during the categorization task may make comparison

of gaze across infant and adult populations more meaningful.

The results of our emotion perception study support a model where participants

encode a common or partly overlapping set of dimensions when categorizing emotional

faces. The next step is to identify the dimensions that would lead to the pattern of

perception that we find in experiments. For example, if we expect shape information

such as distances between face fiducials to be important, which of the many relations

in the face are used? One approach would be to conduct another study where all

but a few possible dimensions are masked from the face, as in the bubbles study, and

find the dimensions that allow recognition. The problem with that approach is that

participants may rely on an analytical local feature processing in order to categorize
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the expression if only particular features are visible. Therefore, we could not be

certain that the dimensions found to be important using this paradigm were the ones

used by participants in a more natural setting. A better approach would be to use

natural looking faces where particular dimensions were altered, and test participants

to see how and if their perception of the faces changed. Such a methodology has been

used successfully in the past [86], but only tested a few dimensions and emotions.

If we are to test a wide variety of dimensions and emotions, it would be necessary

to carefully determine which dimensions to alter for the subsequent behavioral study

since testing every combination would be impractical.

We began exploring this problem of identifying the important dimensions by at-

tempting to determine which relational measures of the face stimuli from the adult

emotion study yield the pattern of perception that we see in the adult participants.

Specifically, we have about 180 expressive face stimuli that were categorized by 34

subjects who make mistakes about 23% of the time. We hypothesize that some of

these mistakes result from similarity in the value of one or more of the important rela-

tional dimensions between the true and perceived emotional face category. Therefore,

by considering all the relational measure values and the pattern of emotion percep-

tion for all of the tested stimuli, we may be able to find the dimensions that would

predict the pattern of perception that we found in the data. The next step would

be to validate those dimensions, either through another behavioral study or by cross

validation.

In the case of infants, the main shortcoming of this work is the lack data. We

cannot say with confidence that infants are discriminating emotional faces since we

only have about 5 participants in each age group, and most participants did not
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complete the study. We would like to collect sufficient data in order to determine if

there are statistically significant changes in gaze over the different age groups, and to

make more specific conclusions about the ability of those age groups to discriminate

the different emotional facial expressions. Since our design takes about 20 minutes for

an infant to complete, one direction of future research would be to develop a paradigm

which tests discrimination of the 6 emotions in half the time. Since habituation and

forced preferential looking take a significant amount of type, it may be necessary to

develop an alternative paradigm for assessing discrimination in infants.
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